Die allgemeine Sinusfunktion

Die allgemeine Sinusfunktion hat die Funktionsgleichung

\[y = a \cdot \sin (b \cdot (x + c)) + d \]

mit reellen Zahlen a, b, c sowie a ≠ 0 und b ≠ 0

\[y = \sin(x) + d \]

Der Graph der Funktion \(f : x \rightarrow y = \sin(x) + d \) ist eine mit dem Vektor \(v = \begin{pmatrix} 0 \\ d \end{pmatrix} \) in y-Richtung verschobene Sinuskurve.

Die Funktion f hat die Periodenlänge \(p = 2\pi \) und die Wertemenge \(W = [d - 1; d + 1] \).

\[y = \sin(x + c) \]

\[y = \sin \left(x + \frac{2\pi}{3} \right) \]

\[y = \sin \left(x - \frac{\pi}{3} \right) \]

Der Graph der Funktion \(f : x \rightarrow y = \sin(x + c) \) ist eine mit dem Vektor \(v = \begin{pmatrix} -c \\ 0 \end{pmatrix} \) in x-Richtung verschobene Sinuskurve.
Die Funktion f hat die Periodenlänge $p = 2\pi$ und die Wertemenge $W = [-1; 1]$.

$y = a \cdot \sin x$

Ist $a > 0$, dann ist der Graph der Funktion $f: x \rightarrow y = a \cdot \sin x$ eine mit dem Faktor a in y-Richtung gestreckte Sinuskurve.

Die Funktion f hat die Periodenlänge $p = 2\pi$ und die Wertemenge $W = [-a; a]$.

a heißt auch Amplitude der Sinusfunktion.

Ist $a < 0$, dann ist der Graph der Funktion $f: x \rightarrow y = a \cdot \sin x$ eine mit dem Faktor $|a|$ in y-Richtung gestreckte und anschließend an der x-Achse gespiegelte Sinuskurve.

Die Funktion f hat die Periodenlänge $p = 2\pi$ und die Wertemenge $W = [a; -a]$.

$y = \sin(b \cdot x)$

Ist $b > 0$, dann ist der Graph der Funktion $f: x \rightarrow y = \sin(b \cdot x)$ eine mit dem Faktor $\frac{1}{b}$ in x-Richtung gestreckte Sinuskurve.
Die Funktion f hat die Periodenlänge $p = \frac{2\pi}{b}$ und die Wertemenge $W = [-1; 1]$.

Ist $b < 0$, dann ist der Graph der Funktion $f : x \rightarrow y = \sin(b \cdot x)$ eine mit dem Faktor $\left| \frac{1}{b} \right|$ in x-Richtung gestreckte und anschließend an der y-Achse gespiegelte Sinuskurve.

Die Funktion f hat die Periodenlänge $p = \frac{2\pi}{|b|}$ und die Wertemenge $W = [-1; 1]$.

Zusammenfassung

Der Graph der Funktion $f : x \rightarrow y = a \cdot \sin b \cdot (x + c) + d$ mit $a, b > 0$, geht durch eine Streckung mit dem Faktor $\frac{1}{b}$ in x-Richtung und eine Streckung mit dem Faktor a in y-Richtung und eine anschließende Verschiebung mit dem Vektor $v = (-c, d)$ aus der Sinuskurve hervor.

Aufgabentypen

1. Finde zu jedem Graphen einen geeigneten Funktionstern

 a) Aus der Zeichnung:

 \[
 p = \frac{5}{3}\pi + \frac{1}{3}\pi = 2\pi \quad \Rightarrow \quad b = 1
 \]

 \[
 f(x) = 2 \sin \left(x + \frac{\pi}{3}\right)
 \]

 b) Aus der Zeichnung:

 \[
 p = \frac{\pi}{3}\pi + \frac{5}{3}\pi = 2\pi \quad \Rightarrow \quad b = 1
 \]

 \[
 f(x) = 1,5 \cdot \sin \left(x - \frac{2}{3}\pi\right) + 2
 \]
Aus der Zeichnung:

\[p = \frac{4}{3} \pi \]

\[\frac{2\pi}{b} = \frac{4}{3} \pi \Rightarrow b = \frac{3}{2} \]

\[f(x) = 3 \cdot \sin \left(\frac{3}{2} x \right) \]

e)

Aus der Zeichnung:

\[p = \frac{8}{3} \pi \]

\[\frac{2\pi}{b} = \frac{8}{3} \pi \Rightarrow b = \frac{3}{4} \]

\[f(x) = 2 \cdot \sin \left(\frac{3}{4} x \right) + 1 \]

f)

Aus der Zeichnung:

\[1,5 \cdot p = \frac{1}{2} \pi + \frac{7}{2} \pi = 4\pi \Rightarrow p = \frac{8}{3} \pi \]

\[\frac{2\pi}{b} = \frac{8}{3} \pi \Rightarrow b = \frac{3}{4} \]

\[f(x) = \sin \left(\frac{3}{4} (x + \frac{\pi}{2}) \right) + 2 \]

Aus der Zeichnung:

\[p = 3\pi - \frac{1}{3} \pi = \frac{8}{3} \pi \]

\[\frac{2\pi}{b} = \frac{8}{3} \pi \Rightarrow b = \frac{3}{4} \]

\[f(x) = 2 \cdot \sin \left(\frac{3}{4} (x - \frac{\pi}{3}) \right) + 1 \]

2. Ermittle für folgender Funktionen die Wertemenge und die Periodenlänge und skizziere ihre Graphen

a) \(f : x \rightarrow y = 2 \cdot \sin \left[\frac{3}{4} (x - \frac{\pi}{6}) \right] + 1 \)

b) \(f : x \rightarrow y = 3 \cdot \sin \left[\frac{4}{3} (x + \frac{\pi}{2}) \right] - 2 \)

Lösung:
a) Wertemenge: $W = [-1; 3]$
Periodenlänge: $p = \frac{2\pi}{\frac{3}{4}} = \frac{8}{3} \pi$

a) Wertemenge: $W = [-5; 1]$
Periodenlänge: $p = \frac{2\pi}{\frac{4}{3}} = \frac{3}{2} \pi$