
Kinematik

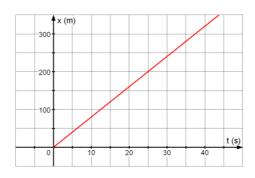
1. Zeit-Ort-Diagramm geradliniger Bewegungen

Bewegt sich ein Körper geradlinig, dann kann mit einem Zeit-Ort-Diagramm dargestellt werden, in welcher Entfernung x(t) von einem Bezugspunkt sich ein Körper zur Zeit t jeweils befindet.

Beispiel 1 : Bewegung eines Autos auf einer Straße

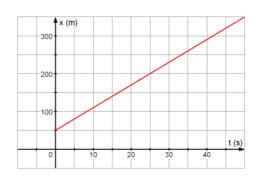
t ((s)	0	5	10	15	20	25	30	35	40
x (m)	0	10	30	50	65	70	70	85	130

2. Bewegung mit konstanter Geschwindigkeit

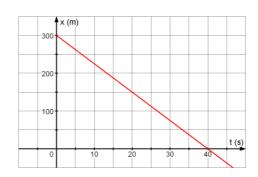

Ein Körper bewegt sich mit konstanter Geschwindigkeit v, wenn der zurückgelegte Weg Δx proportional zur Bewegungsdauer Δt ist.

Die Geschwindigkeit v ist dannn gegeben durch $v = \frac{\Delta x}{\Delta t}$ mit $\left[v\right] = 1 \frac{m}{s} = 3,6 \frac{km}{h}$

Das t-x-Diagramm einer Bewegung mit konstanter Geschwindigkeit ist ein Gerade.


Die Geschwindigkeit ist gleich der Steigung dieser Geraden.

Beispiel 2:


Für die Entfernung x(t) vom Bezugspunkt zur Zeit t gilt $x(t) = 8 \frac{m}{s} \cdot t$.

Beispiel 3:

Für die Entfernung x(t) vom Bezugspunkt zur Zeit t gilt x(x) = $6 \frac{m}{s} \cdot t + 50 \text{ m}$.

Beispiel 4:

Für die Entfernung x(t) vom Bezugspunkt zur Zeit t gilt x(t) = $-7.5 \frac{\text{m}}{\text{s}} \cdot \text{t} + 300 \text{ m}$.

Allgemein gilt für den Ort x(t) eines Körpers, der sich mit der konstanten Geschwindigkeit v bewegt

$$x = x(t) = v \cdot t + x_0$$

 x_0 die Entfernung vom Bezugspunkt zur Zeit t = 0.

3. Mittlere Geschwindigkeit und Momentangeschwindigkeit

Bewegt sich ein Körper nicht mit konstanter Geschwindigkeit

und

befindet er sich zur Zeit t_1 in der Entfernung x_1 vom Bezugspunkt

und

zur Zeit t₂ in der Entfernung x₂,

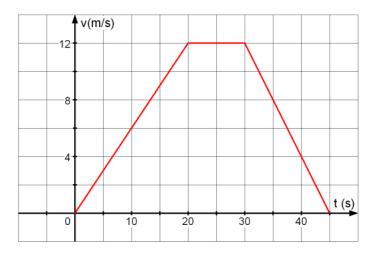
dann heißt

$$\overline{\mathbf{v}} = \frac{\Delta \mathbf{x}}{\Delta \mathbf{t}} = \frac{\mathbf{x}_2 - \mathbf{x}_1}{\mathbf{t}_2 - \mathbf{t}_1}$$

die mittlere Geschwindigkeit $\overset{-}{v}$ des Körpers im Zeitintervall $\left[t_1;t_2\right]$.

Für das Beispiel 1 ergeben sich folgende mittlere Geschwindigkeiten

$\left[\left[t_{1};t_{2}\right] \right]$	$\left[0s;5s\right]$	$\left[5s;10s\right]$	[10s;15s]	[15s;20s]	[20s;25s]	[25s;30s]	[30s;35s]	$\left[35s;40s\right]$
$\overline{\mathbf{v}}$	$2\frac{m}{s}$	$4 \frac{\text{m}}{\text{s}}$	4 m/s	$3 \frac{m}{s}$	$1 \frac{m}{s}$	$0 \frac{m}{s}$	$3 \frac{m}{s}$	9 <u>m</u>


Die mittlere Geschwindigkeit in sehr kleinem Zeitintervall $\left[t;t+\Delta t\right]$ nennt man die Momentangeschwindigkeit des Körpers v(t) zu Zeit t.

4. Das Zeit-Geschwindigkeits-Diagramm

Bewegt sich ein Körper mit veränderlicher Momentangeschwindigkeit, dann kann mit einem Zeit-Geschwindigkeits-Diagramm dargestellt werden, welche Geschwindigkeit v(t) zur Zeit t der Körper jeweils hat.

Beispiel 5:

t(s)	0	5	10	15	20	25	30	35	40	45
v (m/s)	0	3	6	9	12	12	12	8	4	0

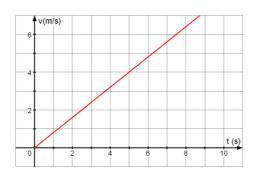
Die Fläche unter dem t-v-Diagramm misst den zurückgelegten Weg.

Also gilt

$$\Delta x = \frac{1}{2} \cdot \left(45 \text{ s} + 10 \text{ s} \right) \cdot 12 \frac{\text{m}}{\text{s}} = 330 \text{ m}$$

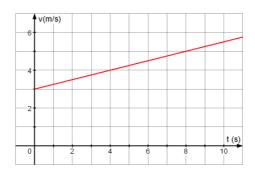
5. Gleichmäßig beschleunigte Bewegung

Ändert sich die Momentangeschwindigkeit eines Körpers, dann sagt man, dass der Körper beschleunigt wird.

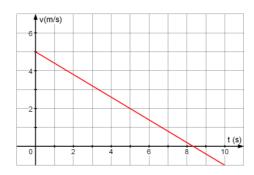

Ein Körper bewegt sich mit konstanter Beschleunigung a, wenn die Geschwindigkeitsänderung Δv proportional zur Beschleunigungszeit Δt ist.

Die Beschleunigung a ist dannn gegeben durch $a = \frac{\Delta v}{\Delta t}$ $mit \left[a\right] = 1 \frac{\frac{m}{s}}{s} = 1 \frac{m}{s^2}$

Das t-v-Diagramm einer Bewegung mit konstanter Beschleunigung ist ein Gerade.


Die Beschleunigung ist gleich der Steigung dieser Geraden.

Beispiel 6:


Für die Momentangeschwindigkeit v(t) zur Zeit t gilt v(t) = $0.8 \frac{\text{m}}{\text{s}^2} \cdot \text{t}$.

Beispiel 7:

Für die Momentangeschwindigkeit v(t) zur Zeit t gilt v(t) = $0.25 \frac{m}{s^2} \cdot t + 3 \frac{m}{s}$.

Beispiel 8:

Für die Momentangeschwindigkeit v(t) zur Zeit t gilt v(t) = $-0.6 \frac{m}{s^2} \cdot t + 5 \frac{m}{s}$.

Für die Momentangeschwindigkeit v(t) eines Körpers, der mit der konstanten Beschleunigung a seine Geschwindigkeit ändert gilt

$$v = v(t) = a \cdot t + v_0$$

 v_0 ist die Geschwindigkeit des Körpers zur Zeit t = 0.

Erhöht ein Körper in der Zeit t seine Geschwindigkeit v_0 mit der Beschleunigung a auf die Geschwindigkeit $v = a \cdot t + v_0$,

dann gilt für die mittlere Geschwindigkeit v in diesem Zeitintervall

$$\overline{v} = \frac{v_0 + v}{2} = \frac{v_0 + a \cdot t + v_0}{2} = \frac{a \cdot t + 2v_0}{2} = \frac{1}{2}a \cdot t + v_0$$

Für den im Zeitintervall $\begin{bmatrix} 0; t \end{bmatrix}$ zurückgelegten Weg gilt dann

$$x = \overline{v} \cdot t = (\frac{1}{2}a \cdot t + v_0) \cdot t = \frac{1}{2}a \cdot t^2 + v_0 \cdot t$$

Bewegt sich ein Körper zur Zeit t = 0 mit der Geschwindikeit v_0 am Bezugspunkt vorbei und ändert sich seine Geschwindigkeit mit der Beschleunigung a,

dann gilt für seinen Ort zur Zeit t

$$x = x(t) = \frac{1}{2}a \cdot t^2 + v_0 \cdot t$$

Weiter gilt
$$\overline{v} = \frac{v + v_0}{2}$$
 \Rightarrow $v + v_0 = 2 \cdot \overline{v}$ und $v - v_0 = a \cdot t$ \Rightarrow $t = \frac{v - v_0}{a}$

und damit
$$x = v \cdot t = \frac{v + v_0}{2} \cdot \frac{v - v_0}{a} \implies 2ax = v^2 - v_0^2$$

Beschleunigt ein Körper auf einer Strecke der Länge x von der der Geschwindigkeit v_0 auf die Geschwindigkeit v und ist a die Beschleunigung, dann gilt

$$v^2 - v_0^2 = 2ax$$

Aufgaben

1.Ein Auto beschleunigt gleichmäßig in 6,0 s von 0 auf 45 $\frac{\text{km}}{\text{h}}$.

Welchen Weg hat es in dieser Zeit zurückgelegt?

2. Eine Rakete beschleunigt in 2,5 min die Geschwindigkeit von 3,0 $\frac{\text{km}}{\text{s}}$ auf 8,0 $\frac{\text{km}}{\text{s}}$.

Wie groß ist die Beschleunigung und welchen Weg legt die Rakete in dieser Zeit zurück?

- 3. Die Beschleunigung des ICE-Höchstgeschwindigkeitszuges der Deutschen Bahn kann bis zu 1,2 $\frac{m}{s^2}$ erreichen.
 - a) Nach welcher Zeit würde danach der Zug seine Höchstgeschwindigkeit von 350 $\frac{\text{km}}{\text{h}}$ erreichen?
 - b) Welche Strecke hat er dann zurückgelegt?
 - c) Der Zug komme danach auf der Strecke von 3500 m aus der Höchstgeschwindigkeit zum Stillstand.

Berechnee die Bremsbeschleunigung und die Bremszeit.

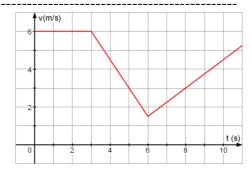
- 4. Ein Auto fährt mit 45 $\frac{\text{km}}{\text{h}}$. Plötzlich taucht in 30 m Entfernung ein Hindernis auf und der Fahrer führt nach einer Reaktiuonszeit von 0,8 eine Vollbremsung durch.
 - a) Das Auto kommt genau vor dem Hindernis zum Stehen.

Bestimme die Bremsbeschleunigung

b) Das gleiche Auto kommt mit 72 $\frac{\text{km}}{\text{h}}$ in dieselbe Situation.

Mit welcher Geschwindigkeit prallt es auf das Hindernis?

- 5. Ein PKW fährt mit einer Geschwindigkeit von 80 $\frac{\text{km}}{\text{h}}$, als der der Fahrer in 65 m Entfernung ein Hindernis bewerkt und nach einer Reaktionszeit von 0,80 s mit $-6.0 \frac{\text{m}}{\text{s}^2}$ bremst.
 - a) Kommt das Fahrzeug rechtzeitig zum Stillstand?
 - b) Zeichne das t-v- und das t-x-Diagramm.
- 6. Ein Auto erhöht seine Geschwindigkeit gleichmäßig in 10 s von 120 $\frac{\text{km}}{\text{h}}$ auf 150 $\frac{\text{km}}{\text{h}}$.


7. In einem Stau stehen zwei Autos in einem Kopfabstand von 6,0 m.

Beim Auflösen des Staus fährt das erste Auto mit einer Beschleunigung von 2,0 $\frac{m}{s^2}$ an, das zweite folge 2,0 s später mit der gleichen Beschleunigung.

- a) Welchen Kopfabstand haben beide Autos nach 10 s?
- b) Mit welcher Beschleunigung müsste der zweite anfahren, damit es zu diesem Zeitpunkt bereits neben dem ersten Auto Kopf an Kopf fährt ?
- 8. Ein Radfahrer fährt 40 s mit der gleichbleibenden Geschwindigkeit von 18 $\frac{\text{km}}{\text{h}}$. Dann beschleunigt er in 20 s auf 28,8 $\frac{\text{km}}{\text{h}}$.

Diese behält er 1 Minute bei und bremst dann innerhalb 40 s zum Stillstand ab.

- a) Welche Strecke legt er beim Beschleunigen zurück?
- b) Wie groß ist die Bremsbeschleunigung?
- c) Wie groß ist die gesamt zurückgelegte Strecke?
- 9. Das Bild zeigt das t-v-Diagramm der Bewegung eines einer Rangierlok.
 - a) Bestimme die Beschleunigungen in den einzelnen Beeegungsabschnitten.
 - b) Welchen Weg legt die Lok in den ersten 10 s zurück?

