Geometrie

I. Zeichnen und Konstruieren

1.1 Der Unterschied zwischen Zeichnen und Konstruieren

Bei der Konstruktion einer geometrischen Figur sind als Hilfsmittel nur ein Lineal ohne Maßstab und ein Zirkel erlaubt.

Bei Konstruktionen dürfen nur die folgenden Schritte durchgeführt werden:

- Beliebigen Punkt zeichnen.
- Beliebigen Punkt auf einer Geraden, Strecke oder Kreislinie zeichnen.
- Gerade durch zwei Punkte zeichnen (Lineal).
- Zwei Punkte durch eine Strecke verbinden (Lineal).
- Schnittpunkte von Geraden, Strecken und Kreislinien zeichnen.
- Kreis um einen gegebenen Mittelpunkt M durch einen weiteren Punkt P zeichnen (Zirkel).
- Kreis um einen gegebenen Mittelpunkt M mit einem Radius zeichnen, der von zwei (schon konstruierten oder gegebenen) Punkten übernommen werden kann (Zirkel).

"Radius aus der Zeichnung in den Zirkel übernehmen und damit einen Kreis zeichnen".

Beim Zeichnen geometrischer Figuren sind alle Hilfsmittel Lineal mit Maßstab, Geodreieck, Winkelmesser usw. erlaubt.

Bei Zeichnungen können die folgenden Schritte durchgeführt werden:

- Lot zu Geraden oder Strecken durch einen Punkt (Geodreieck)
- Parallele zu Geraden oder Strecken durch einen Punkt (Geodreieck)
- Abtragen einer gegebenen Streckenlänge auf einer Geraden (Lineal mit Maßstab)
- Übertragen einer gegebenen Winkelgröße an eine Gerade in einem Punkt (Winkelmesser)
1.2 Beispiele

A Halbierung einer Strecke nur mit dem Zirkel

B Napoleonisches Problem

Aufgabe

Gegeben ist Kreis k und sein Mittelpunkt M. Konstruiere nur mit dem Zirkel die Eckpunkte eines Quadrat ABCD so, dass A, B, C und D auf k liegen.
II. Achsen- und Punktsymmetrie

2.1 Achsensymmetrische Figuren

Eine Figur heißt achsensymmetrisch, wenn sie durch eine eine Gerade \(a \) in zwei deckungsgleiche Hälften zerlegt werden kann. Die Gerade \(a \) nennt man Symmetrieachse der Figur.

Eigenschaften achsensymmetrischer Figuren:

- Zu jedem Punkt \(A \) der Figur, der links von der Symmetrieachse \(a \) liegt, gibt es einen entsprechenden Punkt \(A' \) auf der rechten Seite von \(a \).

 \(A \) und \(A' \) heißen symmetrisch zueinander.

- Liegt ein Punkt \(C \) der Figur auf der Achse, dann ist er gleich dem symmetrischen Punkt \(A' \).

- Ein Punkt \(A \) und sein Spiegelpunkt \(A' \) sind von jedem Punkt der Symmetrieachse gleich weit entfernt.

- Die Verbindungsstrecke \(PP' \) zweier zueinander symmetrischer Punkte wird von der Symmetrieachse rechtwinklig halbiert.
1. Welche Figuren sind achsensymmetrisch? Zeichne möglichst viele Symmetrieachsen ein!
2.2 Die Achsenspiegelung

Beim Spiegeln eines Punktes P an der Spiegelachse a liegt der Spiegelpunkt so, dass die Strecke PP' von der Spiegelachse a rechtwinklig halbiert wird.

Figur und Bildfigur bilden zusammen eine achsensymmetrische Figur.

Ist P' der Spiegelpunkt von A bei der Spiegelung an der Achse a, dann schreibt man $A(a): P \rightarrow P'$

Bemerkung:

Eine achsensymmetrische Figur wird durch eine Achsenspiegelung an ihrer Symmetrieachse auf sich selbst abgebildet.

Eigenschaften der Achsenspiegelung:

- Alle Punkte der Spiegelachse werden auf sich selbst abgebildet. Man nennt sie deshalb Fixpunkte. Die Spiegelachse ist Fixpunktgerade.

- Das Bild einer Geraden ist eine Gerade
1. Lotgeraden zur Achse werden auf sich selbst abgebildet. Sie sind Fixgeraden.

2. Schneidet die Gerade die Achse a nicht senkrecht, so schneidet die Spiegelgerade die Achse im selben Punkt und unter dem gleichen Winkel.

3. Ist die Gerade parallel zur Achse a, dann auch ihr Spiegelbild.

- Es gilt das Prinzip der Inzidenz:
 Liegt ein Punkt auf einer Geraden g, dann liegt sein Bildpunkt auf der Bildgeraden g'.

- Das Bild eines Winkels ist ein Winkel.

Ein Winkel und sein Spiegelbild sind gleich groß, aber haben entgegengesetzten Drehsinn.

\[A(a) : \angle ASB \rightarrow B'S'A' \]
- Das Bild einer Strecke ist eine Strecke. Strecke und Bildstrecke sind gleich lang.

Folgerung:

Das Spiegelbild eines Kreises ist ein Kreis mit gleichem Radius.

Aufgaben

1. Konstruiere das Spiegelbild

 a)

 b)
2. a) Konstruiere eine Spiegelachse a so, dass bei der Spiegelung an a die Bildpunkte von B und D auf der Geraden g liegen.
2.3 Grundkonstruktionen zur Achsenspiegelung

1. Grundkonstruktion

Aufgabe

Gegeben ist eine Gerade \(a\) und ein Punkt \(P\), der nicht auf \(a\) liegt.

Konstruiere den Bildpunkt \(P'\) von \(P\) bei der Spiegelung an \(a\).

Plan

Man wählt zwei Punkte \(A\) und \(B\) auf \(a\).

Der Bildpunkt \(P'\) von \(P\) liegt auf

\[a) \ k(A; \ r = \overline{AP}) \quad b) \ k(B; \ r = \overline{BP}) \]

2. Grundkonstruktion

Aufgabe

Gegeben sind zwei Punkte \(P\) und \(P'\). Konstruiere die Gerade \(a\), so dass \(P\) bei der Spiegelung an \(a\) auf \(P'\) abgebildet wird.

Plan

Man konstruiert um \(P\) und \(P'\) zwei sich schneidende Kreise mit gleichem Radius.

Die gesuchte Symmetrieachse \(a\) geht dann durch die beiden Schnittpunkte dieser Kreise.

\[a \]

\[T \]

\[S \]
2.4 Anwendungen

Die Mittelsenkrechte

Die Gerade, welche eine gegebene Strecke \([AB]\) rechtwinklig halbiert, heißt die Mittelsenkrechte \(m_{[AB]}\) dieser Strecke.

Die Mittelsenkrechte ist die Symmetrieachse der Achsenspiegelung, die A auf B abbildet.

Lot fällen und Lot errichten

Aufgabe

Gegeben ist eine Gerade \(g\) und ein Punkt \(P\), der nicht auf \(g\) liegt. Konstruiere eine Gerade \(l\) durch \(P\), die auf \(g\) senkrecht steht.

Plan

Man konstruiert zwei Punkte \(A\) und \(B\) auf \(g\), die von \(P\) gleich weit entfernt sind.

Die Mittelsenkrechte der Strecke \([AB]\) ist dann die gesuchte Gerade \(l\).

Die Gerade \(l\) heißt das Lot oder die Lotgerade von \(P\) auf die Gerade \(g\).
Fällt man das Lot l von einem Punkt P auf eine Gerade g, dann heißt der Schnittpunkt der Lotgeraden l mit g der **Lotfußpunkt F** des Lotes von P auf.

Die Länge der Lotstrecke [PF] heißt **Abstand** d(P; g) des Punktes P von der Geraden g.

\[
d(P; g) = PF
\]

Bemerkung:

Sind zwei Geraden g und h parallel, dann ist ein Lot auf g auch ein Lot auf h.

Die Länge der Verbindungstrecke der beiden Lotfußpunkte heißt Abstand d(g; h) der beiden parallelen Geraden.

\[
d(g; h) = EF
\]

Aufgabe

Gegeben ist eine Gerade g und ein Punkt P auf g. Konstruiere das Lot zu g durch P.

Plan

Man konstruiert zwei Punkte A und B auf g, die von P gleich weit entfernt sind.

Die Mittelsenkrechte der Strecke [AB] ist dann die gesuchte Gerade l.

Die Gerade l heißt das Lot oder die Lotgerade von P auf die Gerade g.
• Die Mittelparallele

Eine Gerade, die zu zwei parallelen Geraden \(g \) und \(h \) parallel ist, und diesen gleichen Abstand hat, heißt Mittelparallele \(m \) von \(g \) und \(h \).

Aufgabe

Konstruiere zu zwei parallelen Geraden \(g \) und \(h \) die Mittelparallele \(m \).

Plan

Man konstruiert eine Lotgerade \(l \) zu \(g \). Diese Lotgerade ist auch ein Lot zu \(h \).

Die Mittelsenkrechte der Verbindungstrecke der beiden Lotfußpunkte \(E \) und \(F \) ist die Mittelparallele \(m \).

• Die Winkelhalbierende

Die Gerade durch den Scheitel \(S \) eines Winkels \(\alpha \), die diesen Winkelin zwei gleich große Hälften zerlegt, heißt die **Winkelhalbierende** \(w_{\alpha} \) des Winkels.

Aufgabe

Konstruiere die Winkelhalbierende \(w_{\alpha} \) eines gegebenen Winkels \(\alpha \).

Plan

Man konstruiert zwei Punkte \(A \) und \(B \) auf den Schenkeln des Winkels, die von seinem Scheitel \(S \) gleich weit entfernt sind.

Die Mittelsenkrechte der Strecke \([AB]\) halbiert dann den Winkel.