Theorem. Let P, Q, and R be three points on a line, with Q lying between P and R. Semicircles are drawn on the same side of the line with with diameters PQ, QR, and PR. An arbelos is the figure bounded by these three semicircles. Draw the perpendicular to PR at Q, meeting the largest semicircle at S. Then the area A of the arbelos equals the area C of the circle with diameter QS [Archimedes, Liber Assumptorum, Proposition 4].

Proof.

\[A + A_1 + A_2 = B_1 + B_2 \]
\[B_1 = A_1 + C_1 \]
\[B_2 + A_2 + C_2 \]

\[A + A_1 + A_2 = A_1 + C_1 + A_2 + C_2 \]
\[\therefore A = C_1 + C_2 = C \]

——Roger B. Nelsen
Lewis & Clark College