In einem kartesischen Koordinatensystem sind die Punkte A $\left(2\mid 0\mid 1\right)$, B $\left(2\mid -2\mid 0,5\right)$ und C $\left(0\mid -4\mid 1\right)$ sowie die Ebene F: $x_1+x_2+2x_3-4=0$ gegeben.

1. a) A, B und C legen die Ebene E fest. Bestimmen Sie je eine Gleichung der Ebene E in Parameterform sowie in Normalenform.

mögliches Teilergebnis E:
$$2x_1 - x_2 + 4x_3 - 8 = 0$$

b) Bestätigen Sie, dass die Gerade s: $x = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \sigma \cdot \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$ mit $\sigma \in \mathbb{R}$ die Schnittgerade der

Ebenen E und F ist, und begründen Sie, dass s in der x₁x₃-Koordinatenebene liegt.

- c) Zeigen Sie, dass die Punkte R $\left(4\mid0\mid0\right)$ und S $\left(0\mid0\mid2\right)$ auf der Geraden s liegen und dass die T $\left(0\mid-8\mid0\right)$ bzw. U $\left(0\mid4\mid0\right)$ die Schnittpunkte der Ebene E beziehungsweise der Ebene F mit der x_2 -Achse sind.
- d) Zeichnen Sie die Punkte R, S, T und U sowie dieGerade s in ein Koordinate system (vgl. Skizze) ein veranschaulichen Sie die Lage der Ebenen E und F.durch Einzeichnen ihrer Spurgeraden.

2. In einem Geländemodell liegen die Hänge eines Bergrückens in den Ebenen E und F. Der Grat dieses Bergrückens wird von einem Teil der Geraden s gebildet. Die x₁-Achse zeigt in Südrichtung, die x₂-Achse in Ostrichtung.

Vom Punkt B aus wird horizo al ein Tunnel in Ostrichtung durch den Berg bis zur Ebene F gebohrt.

- a) Berechnen Sie die Länge des Tunnels im Geländemodell.
- b) Vom Punkt P $\left(2 \mid p_2 \mid p_3\right)$ der Geraden TR soll in i der Ebene E eine geradlinige Zufahrtsstraße zum Tunneleingang B gelegt werden.

Berechnen Sie die Koordinaten von P und begründe, Sie, dass diese Zufahrt zum Tunneleingang B bergauf und genau von esten nach Osten verläuft.

c) Berechnen Sie für diese Zufahrtsstraße von P nach B den Neigungswinkel α gegen die Horizontale.

Beschreiben Sie mit kurzer Begründung, in welchem Punkt L der Strecke [TR] die steilstmöglich geradlinige Zufahrtsstraße zum Tunneleingang B beginnen würde.

1. a) E:
$$\overrightarrow{x} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + \lambda \cdot \begin{bmatrix} 0 \\ -2 \\ -0.5 \end{bmatrix} + \mu \cdot \begin{bmatrix} -2 \\ -4 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} + \sigma \cdot \begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix} + \mu \cdot \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$

Normalenvektor:
$$\begin{bmatrix} 0 \\ 4 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ -4 \end{bmatrix} = -\begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$$

Normalenform:
$$\begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} \cdot \begin{bmatrix} \rightarrow \\ x - \begin{pmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 0 \iff 2x_1 - x_2 + 4x_3 - 8 = 0$$

b)
$$(1) \begin{vmatrix} x_1 + x_2 + 2x_3 - 4 & = & 0 \\ 2x_1 - x_2 + 4x_3 - 8 & = & 0 \end{vmatrix}$$

$$(1) + (2) \left| 3x_1 + 6x_3 - 12 \right| = 0 \iff x_1 + 2x_3 - 4 = 0$$

Parametrisierung : $x_3 = \alpha \implies x_1 = 4 - 2\alpha$

Eingesetzt in (1): $4-2\alpha + x_2 + 2\alpha - 4 = 0 \iff x_2 = 0$

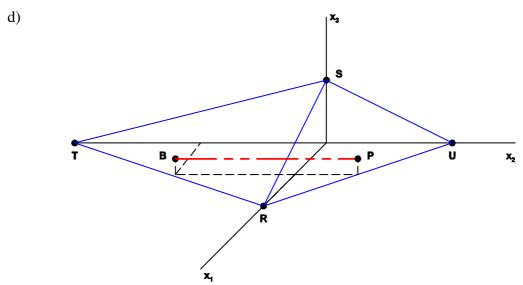
Die Schnittgerade s ist also gegeben durch s : $\vec{x} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \alpha \cdot \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$.

Wegen $x_2 = 0$ für alle Punkte von s, liegt s in der x_1x_3 -Koordinatenebene.

c) Als Aufpunkt von s liegt
$$R(4 \mid 0 \mid 0)$$
 auf s und $\begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$ zeigt, dasss $S(0 \mid 0 \mid 2)$ auf s liegt.

 $x_1 = x_3 = 0$ in E bzw. F eingesetzt ergibt $x_2 = -8$ bzw. $x_2 = 4$.

Also sind $T(0 \mid -8 \mid 0)$ bzw. $U(0 \mid 4 \mid 0)$ die Schnittpunkte von E bzw. F mit der x_2 -Achse.



2. a) "Geradengleichung" des Tunnels :
$$x = \begin{pmatrix} 2 \\ -2 \\ 0.5 \end{pmatrix} + \beta \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

Schnitt mit der Ebene F: $2 + (-2+\beta) + 2\cdot 0, 5 - 4 = 0 \iff \beta = 3$

Eingesetzt ergibt das P(2 | 1 | 0,5) als Ausgang des Tunnels.

Die Länge des Tunnels ist demnach 3.

b) Gerade TR:
$$x = \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$

 $P(2 | p_2 | p_3)$ eingesetzt ergibt $\gamma = -2$ und damit $p_2 = -4$ und $p_3 = 0$.

Es ist
$$\overrightarrow{PB} = \begin{pmatrix} 0 \\ 2 \\ 0.5 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
.

Wegen $v_1 = 0$ sowie v_2 , $v_3 > 0$ läuft die Auffahrtstraße von Westen nach Osten und immer bergauf.

Steigungsdreieck :
$$\sin \alpha = \frac{0.5}{\sqrt{4.25}} \quad \alpha \approx 14^{\circ}$$

Der Punkt L ist der Fußpunkt des Lotes von B auf die Gerade TR.

Begründung : In diesem Fall ist die Hypotenuse des Steigungsdreiecks am kleinsten.