Gegeben ist die Funktion $f: x \to x \cdot e^{2-x}$ mit dem Definitionsbereich $D_f = \mathbb{R}$. Ihr Graph wird mit G_f bezeichnet.

- 1. a) geben Sie die Nullstelle von f an und untersuchen Sie das Verhalten n f für $x \to -\infty$ und $x \to \infty$.
 - b) Bestimmen Sie Art und Lage des Extrempunkts von Gf und ermitteln Sie dis Gleichung der Tangente t an G_f im Punkt P(0|f(0)).

Zur Kontrolle : f'(x) =
$$(1-x) \cdot e^{2-x}$$

- c) Untersuche Sie das Krümmungsverhalten von G_f . Geben Sie die Koordinaten des Wendepunkts von G_f an.
- d) Berechnen Sie f(0,5) und f(5). Zeichnen Sie die Tangente t und den Graphen G_f unter Berücksichtigung der bisherigen Ergebnisse in ein Koordinatensystem ei,.

(Platzbedarf im Hinblick auf das Folgende : $-7 \le y \le 9$)

- 2. a) Ermitteln Sie durch Betrachtung einer jeweils geeigneten Dreiecks oder Trapezfläche grobe Näherungswerte für $\int_{0}^{1} f(x)dx$ und $\int_{1}^{5} f(x)dx$.
 - b) Betrachtet wird die Integralfunktion : I : $x \to \int_0^x f(t)dt$ für $x \in \mathbb{R}$:

Bestimmen Sie ohne Verwendung einer Integralfreien Darstellung der Funktion I Art und Lage des Extrempunktes des Graphen von 1.

Skizzieren Sie unter Einbeziehung der bish~ 'gen Ergebnisse, insbesondere auch der Näherungswerte aus Aufgabe 2.a) den Graphen von I in das Koordinatensystem aus Teilaufgabe l.d).

- 3. Gegeben ist nun zusätzlich die Schar der Geraden g_a mit den Gleichungen $y=ax, a \in \mathbb{R}$, und Definitionsbereich $D_a=\mathbb{R}$.
 - a) Jede Gerade g_a hat mit G_f den Ursprung gemeinsam (kein Nachweis erforderlich).

Untersuchen Sie rechnerisch, für welche Werte des Parameters a es einen zweiten Punkt gibt, die Gerade g_a mit G_f gemeinsam hat.

Geben Sie die x-Koordinate x_S dieses Punktes in Abhängigkeit von a an.

Zur Kontrolle :
$$x_S = 2 - \ln a$$

b) $F: x \to (-x-1) \cdot e^{2-x}$ mit $x \in \mathbb{R}$ ist eine Stammfunktion von f (Nachweis nicht erforderlich).

Ermitteln Sie den Inhalt der Fläche, die G_f mit der Geraden g_a m für a=1 einschließt.

c) G_f und die x-Achse schließen im I. Quadranten ein sich ins Unendliche erstreckendes Flächenstück ein, das den endlichen Flächeninhalt e^2 besitzt (Nachweis nicht erforderlich).

Für ein, bestimmtes a_0 teilt die Gerade g_{a_0} dieses Flächenstück in zwei inhaltsgleiche Teilstücke.

Geben Sie einen Ansatz zur Bestimmung von a₀ an.

Lösung

1. a)
$$x = 0$$

$$\lim_{x \to \infty} x \cdot e^{2-x} = \lim_{x \to \infty} \frac{x}{e^{x-2}} = \lim_{x \to \infty} \frac{e^2 \cdot x}{e^x} = 0$$

$$\lim_{x \to \infty} x \cdot e^{2-x} = -\infty$$

b)
$$f'(x) = 1 \cdot e^{2-x} + x \cdot e^{2-x} \cdot (-1) = (1-x) \cdot e^{2-x} = 0 \iff x = 1$$

$$f''(x) = -1 \cdot e^{2-x} + (1-x) \cdot e^{2-x} \cdot (-1) = (x-2) \cdot e^{2-x}$$

$$f''(1) = (1-2) \cdot e^{2-1} = -e < 0$$

Also ist E(1|e) ein Hochpunkt des Graphen.

 $f'(0) = e^2$ und damit ist $y = e^2 \cdot x$ die Gleichung der Tangente im Punkt P.

c)
$$f''(x) = 0 \iff x = 2$$

Krümmungsverhalten von f

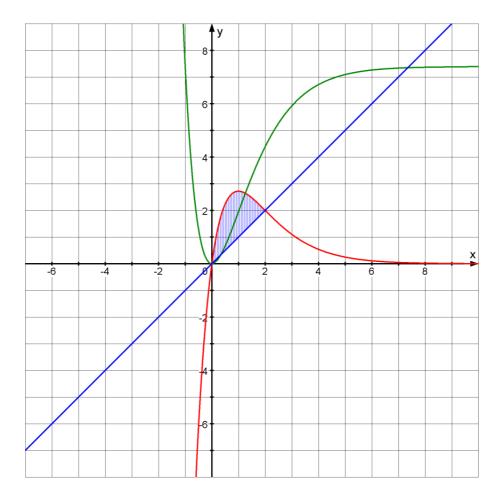
	$-\infty < x < 2$	2 < x < ∞
f "(x)	_	+
	Rechtskrümmung	Rechtskrümmung

Mithin ist W(2| 2) der einzige Wendepunkt des Graphen von f.

d) Der Ursprung ist TP des Graphen von I.

Begründung:
$$f(0) = 0$$
 mit VZW von – nach + und $I(0) = 0$

$$f(-0.5) = -0.5 \cdot e^{2.5} \approx -6.1 \text{ und } f(5) = 5 \cdot e^{-3} \approx 0.25$$



2. a)
$$\int_{0}^{1} f(x)dx \approx \frac{1}{2} \cdot 1 \cdot e = \frac{e}{2} \approx 1,4 \text{ und } \int_{1}^{5} f(x)dx \approx \frac{1}{2} \cdot (e + \frac{5}{e^{3}}) \cdot 4 \approx 5,9$$

3. Gegeben: $g_a \cdot y = ax$

a)
$$ax = x \cdot e^{2-x} \iff x \cdot (a - e^{2-x}) = 0 \iff x = 0 \lor e^{2-x} = a$$

Es gibt also zwei Schnittpunkte, wenn a > 0 ist.

Der zweite Schnittpunkt hat die x-Koordinate $2-x = \ln a \iff x = 2-\ln a$

b) A =
$$\int_{0}^{2} [f(x) - x] dx = \left[(-x - 1) \cdot e^{2 - x} - \frac{x^{2}}{2} \right]_{0}^{2} = (-3 - 2) - (-e^{2}) = e^{2} - 5$$

c)
$$\int_{0}^{2-\ln a} [f(x) - ax] dx = \frac{1}{2}e^{2}$$