Gegeben ist die Schar der in \mathbb{R} definierten Funktionen $f_k: x \to \frac{1}{2}(k-x)\sqrt{e^x}$ mit $k \in \mathbb{R}$: Der jeweilige Graph von f_k wird mit G_k bezeichnet.

a) Geben Sie $f_k(0)$ sowie die Nullstelle von f_k an.

Untersuchen Sie das Verhalten von f_k für $x \to -\infty$ und für $x \to \infty$.

b) Zeigen Sie, dass $f_k'(x) = \frac{1}{2} \cdot f_{k-2}(x)$ gilt,

und ermitteln Sie hiermit Funktionsterme der Ableitungen f_k " und f_k " sowie einer Stammfunktion von f_k .

- c) Zeigen Sie, dass G_k genau einen Hochpunkt und genau einen Wendepunkt besitzt, und bestimmen Sie die Koordinaten dieser Punkte.
- d) Zeichnen Sie unter Berücksichtigung der bisherigen Ergebnisse G_4 und G_6 in ein gemeinsames Koordinatensystem ein.
- e) G₄ schließt im zweiten Quadranten mit den Koordinatenachsen ein sich ins Unendliche erstreckendes Flächenstück ein. Begründen Sie, dass dieses einen endlichen Inhalt hat.
- f) Geben Sie an, welche Bedeutung die Funktion $2 \cdot f(6)$ für die Funktion f_4 hat.

Bestimmen Sie mit Hilfe von G_6 aus Ihrer Zeichnung die positive Zahl z (auf eine Dezimale

genau), für die
$$\int_{0}^{z} f(x)dx = 0$$
 ist.

Tragen Sie dazu entsprechende Hilfslinien in die Zeichnung ein und erläutern Sie Ihr Vorgehen. Überprüfen Sie Ihre graphisch gewonnene Näherungslösung, indem Sie z mit Hilfe des Taschenrechners auf eine Dezimale genau ermitteln.

2. Das abgebildete Zelt - geometrisch betrachtet ein gerades Prisma - hat einen rechteckigen Grundriss mit den Seitenlängen $\frac{3}{2}$ a und b.

Die Front besteht aus einem Rechteck mit den Seitenlängen $\frac{3}{2}$ a und a sowie einem aufgesetzten gleichschenkligen Dreieck der Höhe a.

a) Zeigen Sie, dass für den Rauminhalt V des Zelts und für den Flächeninhalt S der benötigten Zeltplane (ohne Boden und Laschen, das Zelt ist vollständig geschlossen) gilt :

$$V = \frac{9}{4}a^2b \text{ und } S = \frac{9}{2}a^2 + \frac{9}{2}ab$$

b) Bestimmen Sie a und b so, dass V = 121,5 m³ ist und dass der Materialverbrauch an Zeltplane möglichst gering ist.

Wie viele m² Zeltplane werden in diesem Fall benötigt?

Lösung

1. a) Nullstelle : x = k

Funktionswert : $f_k(0) = \frac{1}{2}k$

$$\lim_{x \to -\infty} f_k(x) = \lim_{x \to -\infty} \frac{1}{2} (k-x) \sqrt[]{e^x} = \lim_{x \to -\infty} \frac{1}{2} \frac{k-x}{e^{-0,5x}} \stackrel{H}{=} \lim_{x \to -\infty} \frac{-0,5}{-0,5e^{-0,5x}} = 0$$

$$\lim_{x \to \infty} f_k(x) = \lim_{x \to \infty} \frac{1}{2} (k-x) \sqrt[n]{e^x} = \lim_{x \to \infty} \frac{1}{2} (k-x) \cdot e^{\frac{1}{2}x} = -\infty \text{ weil } \lim_{u \to \infty} e^u = \infty$$

b)
$$f_k'(x) = \frac{1}{2} \cdot \left[(-1) \cdot e^{0.5x} + (k-x) \cdot \frac{1}{2} e^{0.5x} \right] = \frac{1}{4} \cdot (k-2-x) \cdot e^{0.5x} = \frac{1}{2} \cdot f_{k-2}(x)$$

$$f_k''(x) = \left[f_k'(x)\right]' = \left[\frac{1}{2} \cdot f_{k-2}(x)\right]' = \frac{1}{2} \cdot \frac{1}{2} \cdot f_{k-2-2}(x) = \frac{1}{4} \cdot f_{k-4}(x) = \frac{1}{8} \cdot (k-4-x) \cdot e^{0.5}x$$

und analog

$$f_k'''(x) = \frac{1}{8} \cdot f_{k-4}(x) = \frac{1}{16} \cdot (k-6-x) \cdot e^{0.5}x$$

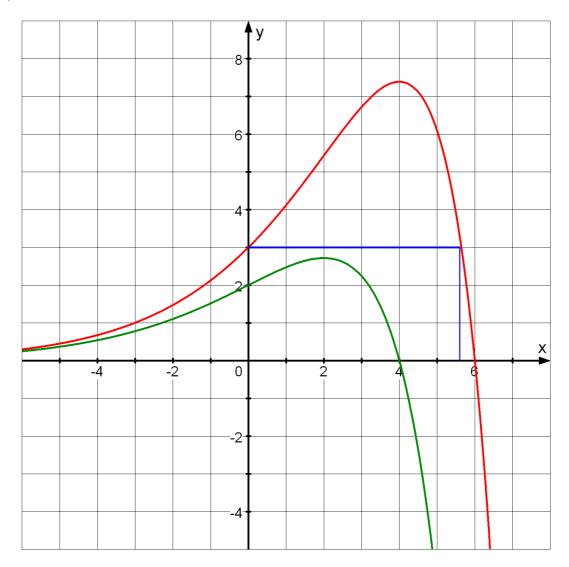
c) Nullstelle der ersten Ableitung x = k-2 mit Vorzeichenwechsel von $+ \rightarrow -$

(vgl. Grenzverhalten) ergibt Hochpunkt H
$$\left(k-2; \sqrt{e^{k-2}}\right)$$

Nullstelle der ersten Ableitung x = k-4 mit Vorzeichenwechsel von $+ \rightarrow -$

(vgl. Grenzverhalten) ergibt Wendepunkt W
$$\left(k-4; 2\sqrt{e^{k-4}}\right)$$

d)



e) A(a) =
$$\int_{a}^{0} f_4(x) dx = \left[2 \cdot f_6(x) \right]_{a}^{0} = 6 - 2 \cdot f_6(a)$$

$$\lim_{a \to -\infty} A(a) = 6$$

f) $2 \cdot f_6$ ist eine Stammfunktion von f_4 .

Es ist
$$\int_{0}^{z} f_4(x) dx = 2 \cdot f_6(z) - 2 \cdot f_6(0) = 0 \iff f_6(z) = 3.$$

$$f_6(5,6) \approx 3,3$$
 $f_6(2,7) \approx 2,6$

2. a)
$$V = \left(\frac{3}{2}a \cdot a + \frac{1}{2} \cdot \frac{3}{2}a \cdot a\right) \cdot b = \frac{9}{4}a^2b$$

$$S = 2 \cdot \frac{9}{4}a^2 + (a + a + \frac{5}{5} + \frac{5}{4}a) \cdot b = \frac{9}{2}a^2 + \frac{9}{2}ab$$

$$b) b = \frac{4V_0}{a^2}$$

$$S = \frac{9}{2}a^2 + \frac{9}{2} \cdot a \cdot \frac{4V_0}{9a^2} = \frac{9}{2}a^2 + \frac{2V_0}{a}$$

$$\frac{dS}{da} = 9a - \frac{2V_0}{a^2} = 0 \implies a = \frac{3}{\sqrt{\frac{2 \cdot 121.5}{9}}} m = 3 m$$

$$\Rightarrow$$
 b = 6 m

$$S = 121,5 \text{ m}^2$$