3. Bedingte Wahrscheinlichkeit

3.1 Vierfeldertafel und Baumdiagramm

Sind A und B zwei Ereignisse, dann nennt man das Schema

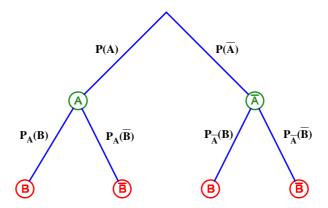
	В	$\overline{\overline{B}}$	
A	$P(A \cap B)$	$P(A \cap \overline{B})$	P(A)
Ā	$P(\overline{A} \cap B)$	$P(\overline{A} \cap \overline{B})$	$P(\overline{A})$
	P(B)	P(B)	

Vierfeldertafel für diese beiden Ereignisse.

Für die Wahrscheinlichkeit $P_A(B)$ des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch

$$P_{A}(B) = \frac{P(A \cap B)}{P(A)}$$

Der Sachverhalt lässt sich mit einem Baumdiagramm darstellen.



1. Pfadregel

Die Wahrscheinlichkeit eines durch einen Pfad dargestellen UND-Ereignisses ist gleich dem Produkt der Wahrscheinlichkeiten entlang des Pfades.

$$P(A \cap B) = P(A) \cdot P_A(B)$$

Man nennt diese Wahrscheinlichkeiten auch Pfadwahrscheinlichkeiten.

2. Pfadregel

Die totale Wahrscheinnlichkeit eines Ereigniss ist gleich der Summe der für das Ereignis günstigen Pfadwahrscheinlichkeiten.

$$P(B) = P(A) \cdot P_A(B) + P(\overline{A}) \cdot P_{\overline{A}}(B)$$

Baumdiagramm eigenen sich auch zur Veranschaulichung von mehrstufigen Zufallsexperimenten und der Ermittlung ihrer Ergebnismenge sowie zur Berechnung von Wahrscheinlichkeiten mit Hilfe der Pfadregeln.

3.2 Formel von Bayes

Ist P_A(B) die Wahrscheinlichkeit von B unter der Bedingung A, dann gilt

$$P(A \cap B) = P(A) \cdot P_A(B) \text{ und } P(B) = P(A) \cdot P_A(B) + P(\overline{A}) \cdot P_{\overline{A}}(B)$$

und damit

$$P_B(A) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P_A(B)}{P(A) \cdot P_A(B) + P(\overline{A}) \cdot P_{\overline{A}}(B)} \boxed{ \underline{\textbf{Formel von Bayes}}}$$

3.3 Unabhängigkeit

Zwei Ereignisse A und B werden als voneinander unabhängig bezeichnet, wenn das Eintreten von A keinen Einfluß auf die Wahrscheinlichkeit des Eintretens von B und umgekehrt hat d.h.

$$P_{A}(B) \,=\, \frac{P(A \cap B)}{P(A)} \,=\, P(B) \quad \Longleftrightarrow \quad P(A \cap B) \,=\, P(A) \cdot P(B)$$

Zwei Ereignisse A und B sind voneinander unabhängig, wenn die Multiplikationsformel

$$P(A \cap B) = P(A) \cdot P(B)$$

gilt. Andernfalls heißen sie abhängig voneinander.

Wenn A und B voneinander unabhängig sind,

dann sind dies auch A und \overline{B} , \overline{A} und B sowie \overline{A} und \overline{B}