Abitur 2013 Mathematik Infinitesimalrechnung II

Teilaufgabe Teil 1 1 (5 BE)

Geben Sie für die Funktion f mit $f(x) = \ln(2013 - x)$ den maximalen Definitionsbereich D, das Verhalten von f an den Grenzen von D sowie die Schnittpunkte des Graphen von f mit den Koordinatenachsen an.

Teilaufgabe Teil 1 2 (4 BE)

Der Graph der in \mathbb{R} definierten Funktion $f: x \mapsto x \cdot \sin x$ verläuft durch den Koordinatenursprung. Berechnen Sie f''(0) und geben Sie das Krümmungsverhalten des Graphen von f in unmittelbarer Nähe des Koordinatenursprungs an.

Gegeben sind die in \mathbb{R} definierten Funktionen $g: x \mapsto e^{-x}$ und $h: x \mapsto x^3$.

Teilaufgabe Teil 1 3a (2 BE)

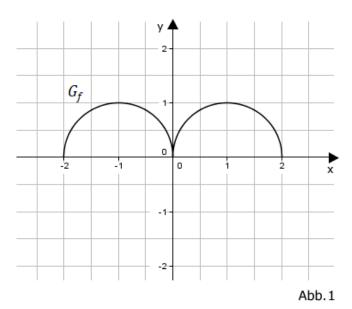
Veranschaulichen Sie durch eine Skizze, dass die Graphen von g und h genau einen Schnittpunkt haben.

Teilaufgabe Teil 1 3b (4 BE)

Bestimmen Sie einen Näherungswert x_1 für die x-Koordinate dieses Schnittpunkts, indem Sie für die in \mathbb{R} definierte Funktion $d: x \mapsto g(x) - h(x)$ den ersten Schritt des Newton-Verfahrens mit dem Startwert $x_0 = 1$ durchführen.

Abbildung 1 zeigt den Graphen G_f der Funktion f mit Definitionsbereich [-2; 2]. Der Graph besteht aus zwei Halbkreisen, die die Mittelpunkte (-1|0) bzw. (1|0) sowie jeweils den Radius

1 besitzen. Betrachtet wird die in [-2;2] definierten Integralfunktion $F: x \mapsto \int_{0}^{x} f(t) dt$.



Teilaufgabe Teil 1 4a (3 BE)

Geben Sie F(0), F(2) und F(-2) an.

Teilaufgabe Teil 1 4b (2 BE)

Skizzieren Sie den Graphen von $\,F\,$ in Abbildung 1.

Gegeben ist die Funktion $f: x \mapsto \frac{1}{2}x - \frac{1}{2} + \frac{8}{x+1}$ mit Definitionsbereich $\mathbb{R} \setminus \{-1\}$. Abbildung 2 zeigt den Graphen G_f von f.

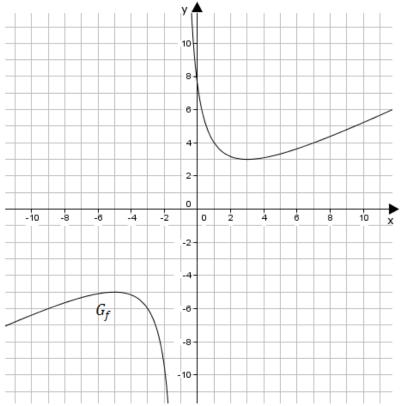


Abb.2

Teilaufgabe Teil 2 1a (6 BE)

Geben Sie die Gleichungen der Asymptoten von G_f an und zeigen Sie rechnerisch, dass G_f seine schräge Asymptoten nicht schneidet. Zeichnen Sie die Asymptoten in Abbildung 2 ein.

Teilaufgabe Teil 2 1b (8 BE)

Bestimmen Sie rechnerisch Lage und Art der Extrempunkte von G_f .

Abbildung 2 legt die Vermutung nahe, dass G_f bezüglich des Schnittpunkts P(-1|-1) seiner Asymptoten symmetrisch ist. Zum Nachweis dieser Symmetrie von G_f kann die Funktion g betrachtet werden, deren Graph aus G_f durch Verschiebung um 1 in positive x-Richtung und um 1 in positive y-Richtung hervorgeht.

Teilaufgabe Teil 2 2a (6 BE)

Bestimmen Sie einen Funktionsterm von g. Weisen Sie anschließend die Punktsymmetrie von G_f nach, indem Sie zeigen, dass der Graph von g punktsymmetrisch bezüglich des Koordinatenursprungs ist.

(Teilergebnis:
$$g(x) = \frac{1}{2}x + \frac{8}{x}$$
)

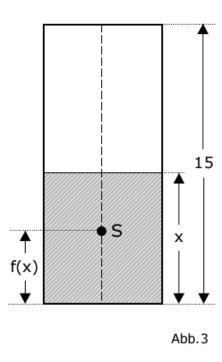
Teilaufgabe Teil 2 2b (8 BE)

Zeigen Sie, dass
$$\int_{0}^{4} f(x) dx = 2 + 8 \cdot \ln 5$$
 gilt.

Bestimmen Sie nun ohne weitere Integration den Wert des Integrals $\int_{-6}^{2} f(x) dx$; veranschaulichen Sie Ihr Vorgehen durch geeignete Eintragungen in Abbildung 2.

Eine vertikal stehende Getränkedose hat die Form eines geraden Zylinders. Die Lage des gemeinsamen Schwerpunkts S von Dose und enthaltener Flüssigkeit hängt von der Füllhöhe der Flüssigkeit über dem Dosenboden ab. Ist die Dose vollständig gefüllt, so beträgt die Füllhöhe 15 cm.

Die bisher betrachtete Funktion f gibt für $0 \le x \le 15$ die Höhe von S über dem Dosenboden in Zentimetern an; dabei ist x die Füllhöhe in Zentimetern (vgl. Abbildung 3).



Teilaufgabe Teil 2 3a (3 BE)

Berechnen Sie f(0) und f(15). Interpretieren Sie die beiden Ergebnisse im Sachzusammenhang.

Teilaufgabe Teil 2 3b (3 BE)

Die zunächst leere Dose wird langsam mit Flüssigkeit gefüllt, bis die maximale Füllhöhe von $15~\mathrm{cm}$ erreicht ist. Beschreiben Sie mithilfe von Abbildung $2~\mathrm{die}$ Bewegung des Schwerpunkts S während des Füllvorgangs.

Welche Bedeutung im Sachzusammenhang hat die Tatsache, dass x-Koordinate und y-Koordinate des Tiefpunkts von G_f übereinstimmen?

Teilaufgabe Teil 2 3c (6 BE)

Für welche Füllhöhen x liegt der Schwerpunkt S höchstens 5 cm hoch? Beantworten Sie diese Frage zunächst näherungsweise mithilfe von Abbildung 2 und anschließend durch Rechnung.