Aufgabenblatt 2: Das bestimmte Integral

- 1. Gegeben ist die Funktion $f: x \to 2x^2 + x$ bzw. $f: x \to \frac{1}{2}x^2 + 1$
 - a) Zeige, dass f auf dem Intervall für $x \ge 0$ streng monoton wachsend ist.
 - b) Bestimme für die äquidistante Unterteilung des Intervalls [0; a], a > 0, in $n(n \in \mathbb{N})$ Teilintervalle die Obersumme O(n) und die Untersumme U(n) in Abhängigkeit von n.
 - c) Sei a = 1. Bestimme das kleinste n so, dass $O(n) U(n) \le \frac{1}{100}$ ist
 - d) Bestimme $\int f(x)dx$ mit einem Grenzwertprozess.

2. Gegeben ist $f: x \to x^3$, $D = \mathbb{R}$

Bestimme mit Hilfe eines Grenzwertprozesses $\int_{0}^{\infty} f(x) dx$ mit $0 \le a < b$. (Es ist : $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$ Beweis!)

3. Berechne und deute geometrisch

a)
$$\int_{3}^{5} 1 dx = \int_{3}^{5} dx$$
 b) $\int_{-3}^{6} x^{2} dx$ c) $\int_{-3}^{-1} x dx$ d) $\int_{-2}^{3} x dx$ e) $\int_{-3}^{-1} x^{2} dx$ f) $\int_{-3}^{-1} x^{3} dx$ g) $\int_{-a}^{a} x^{2} dx$ h) $\int_{-a}^{a} x^{3} dx$

4. Berechne folgende Integrale : a) $\int\limits_{m}^{n}tdt$ b) $\int\limits_{a}^{2a}ydy$ c) $\int\limits_{c-1}^{c+1}z^{2}dz$ und speziell für $c=\sqrt{2}$

5. Berechne: a) $\int_{1}^{2} x dx$ b) $\int_{1}^{3} x dx$ c) $\int_{1}^{3} x^{2} dx$

6. Berechne folgende Integrale:

a)
$$\int_{1}^{4} 3x dx$$
 b) $\int_{0}^{3} \frac{x^{2}}{2} dx$ c) $\int_{1}^{2} (1+x) dx$ d) $\int_{-1}^{2} (2x+x^{2}) dx$ e) $\int_{0}^{1} (2+x)(2-x) dx$

- 7. Berechne die Fläche, die von der Graden y = 4 und dem Graphen der Funktion $y = \frac{1}{4}x^2$ eingeschlossen
- 8. Berechne den Inhalt der Fläche, den der Graph der Funktion $f: x \to 4-x^2$ mit der x-Achse einschließt.
- 9. Welchen Inhalt hat die Fläche, die vom Graphen der Funktion $f: x \to -\frac{1}{3}x^2 + 2x + 1$, der Ordinate des höchsten Punktes, der x-Achse und der y-Achse eingeschlossenm wird?.
- 10. Bestimme durch geometrische Überlegung : $\int \sqrt{9-x^2} dx$