Schnitt von Funktionsgraphen

1. Gegeben sind die Parabel p mit der Gleichung $y = x^2 - 5x$

und die Gerade g :
$$y = -\frac{1}{2}x - 2$$

- a) Bestimme den Scheitel der Parabel und ihre Schnittpunkte mit der x-Achse..
- b) Zeichne die Parabel und die Gerade in dasselbe Koordinatensystem.
- c) Bestimme die Koordinaten der Schnittpunkte von p und g.

2. Gegeben sind die Parabel p mit der Gleichung $y = -x^2 + 4x + 5$

und die Gerade
$$y = 2x + 1$$
.

- a) Bestimme den Scheitel der Parabel und ihre Schnittpunkte mit der x-Achse..
- b) Zeichne die Parabel und die Gerade in dasselbe Koordinatensystem.
- c) Bestimme die Koordinaten der Schnittpunkte von p und g.
- d) Bestimme den y-Abschnitt t der Geraden y = 2x + t so, dass die Gerade die Parabel p berührt.

Berechne die Koordinaten des Berührungspunktes.

3. Durch die Gleichung y = mx + 4 ist für jedes $m \in \mathbb{R}$ eine Gerade g_mgegeben und durch die

Gleichung
$$y = -x^2 - 3x$$
 die Parabel p.

- a) Zeichne die Parabel p und die durch m=1,5 und m=-0,5 festgelegten Geraden $g_{1,5}$ und $g_{-0,5}$ in ein gemeinsames Koordinatensystem.
- b) Berechne die Koordinaten der Schnittpunkt von g₂ mit p.
- c) Bestimme m so, dass g_m eine Tangente von p ist.

4. Gegeben sind die Funktionen

$$f_1: x \to y = \frac{1}{4}x^2$$
, $f_2: x \to y = -\frac{1}{2}x^2 + 2$, $f_3: x \to y = \frac{1}{2}(x+4)^2$ und

$$f_4: x \to y = -\frac{1}{2}x + 2$$

a) Berechne die Nullstellen von f_2 und f_4

- b) Berechne die Koordinaten der Schnittpunkte der Graphen von f₂ und f₄ sowie f₁ und f₃.
- c) Zeichne die Graphen der vier Funktionen mit unterschiedlichen Farben in ein gemeinsames Koordinatensystem ein.
- 5. a) Bestimme die Gleichung der Parabel p, die durch die Punkte A $\Big(0|3\Big)$, B $\Big(2|-1\Big)$ und C $\Big(3|0\Big)$ geht.
 - b) Zeichne p in ein Koordinatensystem ein
 - c) Bestimmen Sie die Schnittpunkte von p mit den Koordinatenachsen.

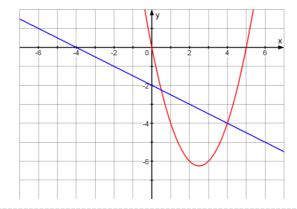
Gegeben ist weiter die Parabel q mit der Gleichung $y = 3x^2 + 6x + 3$.

- d) Bestimme den Scheitelpunkt von q und zeichne q in das bereits angelegte Koordinatensystem ein.
- e) Berechnen Sie die Schnittpunkte von p und q.

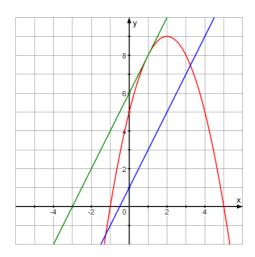
- 6. Für jedes $t \in \mathbb{R}$ ist durch $y = -\frac{1}{2}x^2 + t$ eine Parabel p_t gegeben und durch $y = x^2 4x + 6$ eine Parabel p_t .
 - a) Bestimme die Schnittpunkte von p₄ und p.
 - b) Welche Parabel p_t hat nur einen Punkt mit der Parabel p gemeinsam?

Lösungen

1. Die Lösungen können der Zeichnung entnommen werde.



2. a) und b)



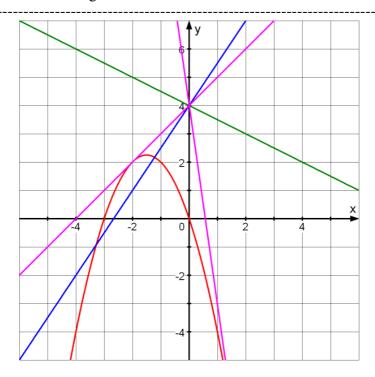
c)
$$S_1(1-\sqrt{5} \mid 3-2\sqrt{5})$$
 und $S_2(1+\sqrt{5} \mid 3+2\sqrt{5})$

d) Schnittbedingung:
$$-x^2 + 4x + 5 = 2x + t \iff -x^2 + 2x + 5 - t = 0$$

Diskriminante : D =
$$2^2 - 4 \cdot (-1) \cdot (5 - t) = 4 + 20 - 4t = 24 - 4t$$

Bedingung für eine Lösung : $24-4t = 0 \iff t = 6$

3. a) und c)



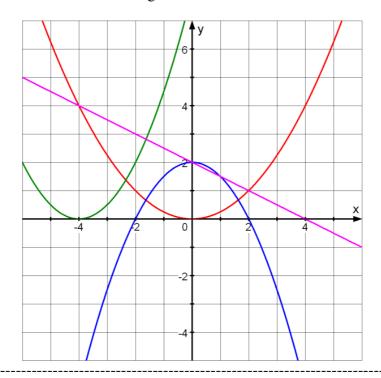
b)
$$S_1(-1|2)$$
 und $S_2(-4|-4)$

c) Schnittbedingung:
$$-x^2 - 3x = mx + 4 \iff -x^2 + (-3 - m) \cdot x - 4 = 0$$

Diskriminante : D =
$$(-m-3)^2 - 4 \cdot (-1) \cdot (-4) = (m-3)^2 - 16$$

Bedingung für eine Lösung:
$$(m+3)^2 - 16 = 0 \iff m = 1 \lor m = -7$$

4. Dit Lösungen kann man der Zeichnung entnehmen



5. a)
$$y = x^2 - 4x + 3$$

- c) $S_{x_1}(1 \mid 0)$ und $S_{x_2}(3 \mid 0)$ sowie $S_y(3 \mid 0)$
- d) $S(-1 \mid 0)$
- e) $S_1(0 \mid 3)$ und $S_2(-5 \mid 48)$

6. a) Die Schnittbedingung $-\frac{1}{2}x^2+4=x^2-4x+6$ ergibt $x=\frac{2}{3} \lor x=2$ und damit die

Schnittpunkt $S_1(\frac{2}{3} \mid 3\frac{3}{4})$ und $S_1(2 \mid 2)$

b) Schnittbedingung: $x^2 - 4x + 6 = -\frac{1}{2}x^2 + t \iff \frac{3}{2}x^2 - 4x + 6 - t = 0$

Diskriminante : D = $(-4)^2 - 4 \cdot \frac{3}{2} \cdot (6 - t) = 16 - 36 + 6t = -20 + 6t$

Bedingung für eine Lösung: $-20-6t = 0 \iff t = \frac{10}{3}$

Graphische Veranschaulichung:

