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Introduction 
The arbelos1, or ‘the shoemaker’s knife’, studied already by Archimedes, is a configuration 
of three tangent circles, and may indeed, due to its many remarkable properties, be called 
three magic circles. In this paper the focus will be on three circles linked to the arbelos, 
involved in the construction of Archimedes’ circles2 and chains of tangent circles. These 
three circles, which I also want to call ‘magic’, are displayed in the figure below. The 
arbelos is conctructed by the circles with diameters BC, BF, and FC, respectively, and FG 
is the perpendicular to BC. The magic circles I will discuss in this paper are the circles with 
centre at B passing F, with centre at C passing G, and with centre on BC (at H) passing B 
and the intersection point R of the previous two magic circles. A parallel “mirror” 
construction of these circles can be performed on the right side of the segment FG. 
 

AB D F

G

C

R

H E  
 
As one starting point of my discussion, I will look at the following basic construction. One 
aspect of Archimedes’ “twin” circles in the arbelos involves constructing a circle tangent to 

                                                
1 See for example [3] 
2 See for example [3]. 
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a given circle and its tangent. Given the point of tangency on the given circle this is easily 
done as in figure 1.  

C B

P

A

T

M

 
 

Figure 1. Construction of tangent circle 
 
A circle on diameter AB with centre C is given3, as well as a point P on this circle, and the 
line tangent to the circle at B. Draw the line by A and P, meeting the tangent in T. The 
perpendicular to the tangent by T meets the line by C and P at M. Thus, the tangent circle is 
found with centre at M and tangency points P and T. The construction is built on the classic 
result that the segment connecting opposite endpoints of parallel diameters to externally 
tangent circles passes the point of tangency. That MP and MT are equal follows from the 
similarity of the triangles ACP and TMP, AC and TM being parallel. 
 
Magic circle 1 
It is evident that the circle 

! 

C
A,B  meets any such tangent circle at a right angle. To prove 

this, apply circle inversion of these three circles and the tangent line to the circle 

! 

C
B,A  , as 

in figure 2.  

C BA

P

T

P' T'

 
 

Figure 2. Inversion in circle with centre at B. 
                                                
3 For this paper I will use the notation 

! 

C
C ,B  for a circle with centre at the point C with radius CB. 
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As point B is mapped, by this inversion, to infinity, the circle 

! 

C
C ,B  is mapped to line 

through A and P’, and circle 

! 

C
A,B  to the perpendicular to AB at C. P and T are mapped to 

P’ and T’, respectively, and the circle with tangent points P and T to the circle tangent to 
the lines by A and P’, and T and T’, respectively, thus orthogonal to the perpendicular to 
AB at C. Because of this orthogonality property I call the circle 

! 

C
A,B  a magic circle. How 

this circle is related to a circle chain in the arbelos will be discussed in the next section. 
 
 
Magic circle 2 
Given its tangency points on the inner circles of the arbelos, the construction in figure 1 
can be used to construct Archimedes’ circles. A simple construction is shown in figure 3, 
where the circle 

! 

C
C ,G  meets the left inner circle at point P, which is a tangency point of the 

left twin circle. Because of this I call the circle 

! 

C
C ,G  a magic circle. The other two 

tangency points, P’ and P’’, are found by drawing the lines by B and P, and by C and P’, 
respectively (see figure 3).  

That P is a tangency point can be established algebraically, using the centre coordinates 

! 

r

2
(1+ r),r 1" r

# 

$ 
% 

& 

' 
(  of the left Archimedes’ circle4 to find the coordinates of its tangency 

point 

! 

r

2" r
,
r 1" r

2" r

# 

$ 
% 

& 

' 
( , which has the same distance 

! 

1" r  to the point C as the point G. 

 
In addition to the properties shown in figure 1, the diameter at P’ to the circle passing P, P’, 
and P’’, is parallel to the diameter BC of the circle 

! 

C
A,C , showing that P’’ is the point of 

tangency between these two circles as it is constructed by the line by CP’, i.e. passing the 
end points of the parallel diameters.   

AB D F CE

G

P

P'

M

P''

 
 

Figure 3. A construction of the left twin circle. 
 

                                                
4 Here, BC = 1 and BF = r, with 0 < r < 1. See for example [3]. 
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The centre M of the twin circle is found as in figure 1, where the perpendicular line to FG 
at P’ meets the line by D and P (for this construction the point P’’ is not needed). The 
construction of the right twin circle is done the same way, by first drawing the circle 

! 

C
B,G  . 

Applying the result from the inversion described in figure 2, chains of tangent circles 
as shown in figure 4 are easily constructed by drawing the magic circle 

! 

C
B,F  (and 

! 

C
C ,F ) in 

the arbelos (with notations as in figure 3)5. 
 

 
 

Figure 4. Circle chains in the arbelos 
 
The mode of construction is the same as in figure 1, illustrated in figure 5, where the first 
circle in the chain after the left twin circle is shown. The inversion in figure 2 proves the 
tangency of this circle also to the left inner circle of the arbelos. 
 

 
 

Figure 5. Construction of first tangent circle in chain 
 

The radii of these chain circles can be evaluated (by algebraic calculation using Pythagoras’ 
theorem on the marked triangles in figure 6) by the following recursion formula: 

! 

r
n+1 =

r " r
n

r + 2r
n( )

2
,  n =1,2,3,... , where 

! 

r1 =
r

2
(1" r)  is the radius for Archimedes’ 

circle, as well known. By a straightforward mathematical induction, the explicit formula  

                                                
5 This magic circle 

! 

C
B,F  is an example of a Woo circle (see [2]) 
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! 

r
n

=
r(1" r)

2 1+ (n"1) 1" r( )
2

,  n =1,2,3,...   can be established. A calculation of the  

coordinates 

! 

(xn , yn )  of the circle centres gives 

! 

xn = r " rn

yn = 2r # rn

$ 
% 
& 

  ,n =1,2,3,...  , where the y-coordinate can be simplified to  

! 

yn =
r 1" r

1+ (n"1) 1" r
,  n =1,2,3,... 

Obviously, 

! 

r
n
" 0  and  

! 

(xn , yn )" (r,0) , and also 

! 

r
n+1

r
n

"1  as 

! 

n"# . 

 
 

Figure 6. Triangles used for establishing the recursion formula. 
 
By symmetry, the corresponding formulæ for the tangent circle chain to the right Archime-
dean circle, with radii 

! 

" r 
n

 , are 
 

! 

" r 
n+1 =

(1# r) $ " r 
n

1# r + 2 " r 
n( )

2
,  n =1,2,3,... , and  

! 

" r 
n

=
r(1# r)

2 1+ (n#1) r( )
2

,  n =1,2,3,... ,  

and the centre coordinates  

! 

" x n = r + " r n

" y n = 2(1# r) $ " r n

% 
& 
' 

  ,n =1,2,3,... ,  

where the y-coordinate can be simplified to 

! 

" y n =
(1# r) r

1+ (n#1) r
,  n =1,2,3,... 

The circle 

! 

C
C ,G  is double magic because it can be used to construct both the twin 

circle and the chain of tangent circles shown in figure 7. 
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Figure 7. A chain of tangent circles in the arbelos. 

 
In figure 7 the radius of the left inner circle of the arbelos has been made small to make it 
possible to visualise the chain of tangent circles having their points of tangency on the 
circle 

! 

C
C ,G   (see notation in figure 3). To prove this tangency property I note that the 

tangent t to circle 
GC

C
,

 is the angle bisector to the line FG and the tangent t’ to circle 
CA

C
,

 
(see figure 8, where P is a point on t’ left to G). Using the notations  

!
"

!
#

$

%=

%=

%=

AGF

BGP

BGF

&

'

(

 

an algebraic calculation shows that !" tantan = .  

Indeed, 
)1(

tan
rr

r

!
=" , 

)1(

2

1

tan
rr

r

!

!

="  , and  
2

)(
!

"#$ =%+ . Therefore  

)1(tantan

tantan1

)tan(

1
tan

rr

r

!
=

!

"+
=

!
=

#$

#$

#$
%  , after simplification. 

 

t'

t

AB F

G

C

P

 
 

Figure 8. Angle bisector. 
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The tangency property to be proved now follows by circle inversion of the line by FG and 
the circles 

CA
C

,
 and 

GC
C

,
 in the circle 

FG
C

,
 . Since the point G by this inversion is mapped 

to infinity the line by FG and the circles 
CA

C
,

 and 
GC

C
,

all are mapped on lines, intersecting 
at the mid point on FG with the image of the circle 

GC
C

,
 being the bisector to the other two 

lines. This proves the tangency property, illustrated in figure 9 (where r is small to make it 
possible to visualise the inversion), where Archimedes’ circle and one more circle in the 
chain and its inverses are shown. The left inner circle of the arbelos is mapped onto itself, 
and the line by the diameter BC onto the circle with diameter FG. 
 

A
B

F C

G

 
 

Figure 9. Inversion of circle chain. 
 
By elementary geometry, using algebra, a recursion formula for the radii of the circle chain 
in figure 7 can be established. Setting the Archimedean circle as the first circle in this 
chain, the result of this computation is the formula 

! 

r
n+1 =

r
n
(1" r)

1+ r "2r
n( )
2

 , for 

! 

n =1,2,3,... with 

! 

r1 =
r

2
(1" r) . 

By this recursion formula the following explicit formula can be proved by mathematical 
induction6: 

                                                
6 I’m grateful to Thomas Bäckdahl for finding the explicit formula for the polynomial 

! 

P
n

 from the 
number pattern of the coefficients of the first ten polynomials. 
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! 

r
n

=
r

2
"
(1# r)

n

P
n

2
(r)

 , 

! 

n =1,2,3,..., where 

! 

P
n
(r) =

1

2
1+ r( )

n

+ 1" r( )
n# 

$ 
% 

& 

' 
(  , which is a 

polynomial in r of degree 

! 

n /2[ ] .  For example, for 

! 

n = 2  and 

! 

n = 5  these radii are 

! 

r2 =
r

2
"
(1# r)

2

(1+ r)
2

   and  

! 

r5 =
r

2
"

(1# r)
5

(1+10r +5r
2
)
2

 . 

To complete the proof by induction the equality 

! 

r
n
(1" r)

1+ r "2r
n( )
2

=
r

2
#
(1" r)

n+1

P
n+1

2
(r)

      

must be established with 

! 

r
n

=
r

2
"
(1# r)

n

P
n

2
(r)

 , which means that the equality 

! 

rP
n

2
(r)" r(1" r)

2
=P

n+1(r)"Pn (r)  must hold. This is easily seen, since the right hand 

side equals 

! 

r

2
1+ r( )

n

" 1" r( )
n# 

$ 
% 

& 

' 
(  , and 

! 

P
n

2
(r)" (1" r)2 =

1

4
1+ r( )

2n

+ 1" r( )
2n

+2(1" r)n
# 

$ 
% 

& 

' 
( " (1" r)n =

1+ r( )
n

" 1" r( )
n

2

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 

2

It is obvious that for 

! 

r >
1

2
  these circles are very small. For example, 

! 

r =
2

3
  gives 

! 

r
2

=
1

75
 

and already 

! 

r
3

=
1

729
 , as compared to the diameter BC = 1. From the recursion formula it 

follows directly by mathematical induction that 

! 

r
n

<
r

2
" (1# r)

n  , and therefore that for 

large n the quotient  

! 

r
n+1

r
n

<
(1" r)

1+
1

2
r

# 

$ 
% 

& 

' 
( 

2
 , which means that the radius is decreasing more 

rapidly than by a geometric progression. 
The corresponding circle centres 

! 

(xn , yn )  can be expressed by r and n by using the 
expression for 

! 

r
n

 above and the geometrically derived relations 

! 

xn = r " rn

yn
2

= (1" r)(r "2rn )

# 
$ 
% 

 

It is obvious that these points indeed approach the point G (see figure 9) as 

! 

n"# . 
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Magic circle 3 
The circles 

! 

C
B,F  and 

! 

C
C ,G  meet in R. Draw the perpendicular bisector to BR, meeting BC 

in H. Draw the circle 

! 

C
H ,R  . This circle is orthogonal to any circle tangent to both circles 

! 

C
A,B  and 

! 

C
D,B  , and I therefore call it a magic circle. To prove this orthogonality property, 

use circle inversion in the circle 

! 

C
B,F  (see figure 10). 

 

AB D F CE

G

R

H

MPQ

Q'

P'
L

 
 

Figure 10. Inversion in circle 

! 

C
B,F  . 

 
Since the point B is mapped to the infinity point by this inversion, the circle 

! 

C
D,B  is 

mapped to the line by FG (and vice versa), and the circle 

! 

C
A,B  is mapped to the line 

perpendicular to BC passing L (the point of intersection between the circles 

! 

C
A,B  and 

! 

C
B,F ),  and the circle 

! 

C
H ,R  to the line perpendicular to BC passing the point R of 

intersection between the circles 

! 

C
H ,R  and 

! 

C
B,F  . The x-coordinate of R is easily calculated 

to )1(
2

r
r

+ , and of L to 2
r , showing that Archimedes’ circle is tangent to the line by L 

perpendicular to BC, having its centre on the line by R perpendicular to BC. This also 
proves the assertion above, illustrated in figure 10 by the points P and Q and their inverted 
points P’ and Q’. The twin circle is mapped onto itself. 

The radius of the magic circle 

! 

C
H ,R  is by elementary algebra found to be 

! 

r

1+ r
 , which 

is the harmonic mean of the radii of the circles 

! 

C
D,F  and 

! 

C
A,C  . As known, the harmonic 

mean is also connected to Archimedes’ circles: the diameter of the Archimedean circle is 
the harmonic mean of the radii of the circles 

! 

C
D,F  and 

! 

C
E,F  . 

I also note that the magic circle 

! 

C
H ,R  meets the circle 

! 

C
E,C  at a tangency point of the 

incircle of the arbelos, and so does the corresponding magic circle with a radius that equals 
the harmonic mean of the circles 

! 

C
E,C  and 

! 

C
A,C  meet the other tangency point of the 
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incricle (see figure 11). This is a direct consequence of the orthogonality property of these 
magic circles I discussed above, and provides one way of constructing this incircle7. The 
circle 

! 

C
H ,R  is thus also double magic. It can also be observed that the line passing the two 

intersection points of the magic circles 

! 

C
H ,R =C

H ,B  and 

! 

C
H ',C  passes the centre of the 

arbelos incircle. Using the radius 

! 

HB =
r

1+ r
 and the radius 

! 

H 'C =
1" r

2" r
, the x-coordinate 

of these intersection points can be algebraically determined to be 

! 

r(1+ r)

2 1" r + r 2( )
, which 

equals the x-coordinate of the centre of the incircle (see [1]). 
 

AB D F CEH H'  
 

Figure 11. Magic circles and the arbelos incircle. 
 
An algebraic calculation, using Pythagoras´ theorem and the length of the radius HB, shows 
that the centres 

! 

(xn , yn )  , 

! 

n =1,2,3,... of the circles in the circle chain orthogonal to 

! 

C
H ,R  

and tangent to the circles 

! 

C
D,F  and 

! 

C
A,C  can be expressed by their radii 

! 

r
n

 with the 
formulae 

! 

xn = rn "
1+ r

1# r

yn
2

= r "
2rn

1# r
" 1#

2rn

1# r

$ 

% 
& 

' 

( 
) 

* 

+ 

, , 

- 

, 
, 

  

 
 

                                                
7 See for example [4] for some simple constructions of the arbelos incircle. 
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where the circle for 

! 

n =1 may be, for example, the incircle of the arbelos, or the left 

Archimedean circle8. With this latter choice of 

! 

r1 =
r

2
(1" r) an algebraic computation 

yields that 

! 

r2 =
(1" r) 2"2r + r 2 ±2(1" r) 1" r( )

2 4 " 4r + r 3( )
 , where the sign is related to which side 

of the Archimedean circle the tangent circle is located. The general explicit formula for the 

radius 

! 

r
n

 seems to be complex9. It can also be observed that for 

! 

r =
3

4
 , the right-sided 

tangent circle to Archimedes’ circle is the arbelos incircle, then having the radius 

! 

3

26
 , and 

the magic circle 

! 

C
C ,G  then having the same radius as the basic circle 

! 

C
A,C  (see figure 12). 

 

A C

G

 

Figure 12. Magic circles with arbelos incircle tangent to Archimedes’ circle. 
 
For the construction of this circle chain, draw the line by R and Q (as in figure 10), and 
draw the line by A parallel to RQ, meeting the circle 

! 

C
A,C  in P (see figure 13). The line by 

P and Q meets the circle 

! 

C
A,C  in P’, which then must be a tangency point for the next 

circle in the chain. Therefore, the intersection point of the radius AP’ and RQ produced will 
meet in the centre point N of the tangent circle, which thus can be drawn. 
 
 
                                                
8 It is easily checked that these circle centres 

! 

(xn , yn ) , for any choice of 

! 

r
n

, lie on the ellipse 

! 

x "
1+ r

4

# 

$ 
% 

& 

' 
( 

2

1+ r

4

# 

$ 
% 

& 

' 
( 

2
+

y
2

r

2

# 

$ 
% 

& 

' 
( 

2
=1 (most often discussed in relation to Pappus chain; see [1]) 

9 In the case with Pappus chain, where 

! 

r
1
 is the radius of the arbelos incircle, the formula is known 

to be 

! 

r
n

=
r(1" r)

2 r + n2 (1" r)2( )
 . See [1]. 
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AB D

F CE

G

R

H

Q

P

P'

N

 
 

Figure 13. Construction of circle chain. 
 
Another observation points to the fact that the line by R and R’, meeting FG at U, is 
perpendicular to the segment AU (see figure 14), since R and R’ are equidistant from FG 

(as shown above) and the segments AR and AR’ both are equal to 

! 

1

2
r
2

+ (1" r)
2  . This 

means that the segment QQ’ is divided into two equal parts by the segment FG. 
 

AB D F CE

G

R

R'

U

Q

Q'

 

Figure 14. Segments RR’ and AU are perpendiclar. 

I also note the circle 

! 

C
A,R  passes the midpoints of the circle arcs BF and FC, respectively, 

and has the same area as the circle passing the midpoint of the arc BC, and the points B and 
F (see figure 15). These observations are established by simple algebraic calculations.   
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Figure 15. Two equal circles by arc midpoints. 

A simple algebraic calculation also shows that the circle ring between the circles 

! 

C
B,G  and 

! 

C
B,F  has the same area as the circle ring between the circles 

! 

C
C ,G  and 

! 

C
C ,F  (see figure 

13), equal to 

! 

"r(1# r) , which equals the area of the circle with radius FG.  
 
The magic circles and circle chains – a summary 
In figure 16 the three magic circles and the circle chains related to them are shown. Their 
constructions and some of their characteristics, including some algebraic representations, 
have been presented above. Similarly, the corresponding circles can be constructed on the 
right side of the perpendicular segment in the arbelos. Archimedes’ circle thus serves as the 
starting circle of three different circle chains in the arbelos, associated with each of the 
three magic circles. It has been shown above that the intersection point of these three circles 
and the centre of Archimedes’ circle lie on the same perpendicular line to the common 
diameter of the arbelos circles. It has also been observed that that two of the magic circles 
meet the inner circles of the arbelos at the tangency points of the arbelos incircle. Some 
additional observations have also been presented. 
 

 

Figure 16. Magic circles and circle chains. 
 

AB D F CE

G

R

R'
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