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1. INTRODUCTION. Written in block capitals on lined paper, the
letter bore a postmark from a Northeastern seaport. “I have a problem
that I would like to solve,” the letter began, “but unfortunately I cannot.
I dropped out from 2nd year high school, and this problem is too tough
for me.” There followed the diagram shown in Figure 1 along with the
statement of the problem: to prove that the line segment DE has the same
length as the line segment AB.

Figure 1. A correspondent’s hand-drawn puzzle.

“I tried this and went even to the library for information about mathe-
matics,” the letter continued, “but I have not succeeded. Would you be so
kind to give me a full explanation?”

Mindful of the romantic story [20] of G. H. Hardy’s discovery of the
Indian genius Ramanujan, a mathematician who receives such a letter wants
first to rule out the remote possibility that the writer is some great unknown
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talent. Next, the question arises of whether the correspondent falls into
the category of eccentrics whom Underwood Dudley terms “mathematical
cranks” [16], for one ought not to encourage cranks.

Since this letter claimed no great discovery, but rather asked politely
for help, I judged it to come from an enthusiastic mathematical amateur.
Rather than file such letters in the oubliette, or fob them off on junior
colleagues, I try to reply in a friendly way to communications from coherent
amateurs. Since mathematics has a poor image in our society, it seems
incumbent on professional mathematicians to seize every opportunity to
foster good will with the lay public. Moreover, any teacher worth the name
jumps at a chance to enlighten an eager, inquiring mind; besides, a careful
investigation of elementary mathematics can be educational even for the
professional.

As Doron Zeilberger and his computer collaborator Shalosh B. Ekhad
have shown [17], the standard theorems of planar geometry can be checked
by executing a few lines of Maple code: typically one merely has to verify the
vanishing of a polynomial in the coordinates of certain points.1 Nonetheless,
proving the theorems by hand—like solving crossword puzzles—is an enter-
taining pastime for many, including my high-school-dropout correspondent.

Since the letter reached me in the slack period before the start of a
semester, I was able to find time to begin examining the problem, which
was new to me. I soon discovered that the underlying geometric figure has
a long history, and learning some details of that history sent me repeatedly
to the interlibrary loan office to puzzle over publications in half-a-dozen
languages. In this article, I reflect on both the mathematics and the history.

2. FIRST REFLECTION. The origin of Figure 2, commonly called
the arbelos (a transliteration of the Greek Łrbhloc), is lost in the sands of
time. The figure shows the region bounded by three semicircles, tangent in
pairs, with diameters lying on the same line. The first substantial treatment
of the arbelos in modern times (say the last two hundred years) is part of
a famous paper [37] by Jacob Steiner in the first volume of Crelle’s journal
in 1826. The arbelos continues to make occasional appearances in journal
articles (see [15] and its references) and in student theses (for instance [23],
[26], [44]); one of Martin Gardner’s columns in Scientific American discusses
it [19]; Eric W. Weisstein covers it in his MathWorld encyclopedia [43]; and
there is today a web site http://www.arbelos.org/. Yet Victor Thébault’s
characterization of the arbelos (half a century ago) as “universally known”

1A similar attempt in 1969 failed for lack of computing power [11].
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Figure 2. The arbelos.

seems to be an exaggeration.2

The fascinating geometric properties of the arbelos range from the ele-
mentary to the abstruse. An elementary first proposition is that the length
of the lower boundary of the arbelos equals the length of the upper bound-
ary. The proof is immediate from the knowledge that the circumference of
a circle is proportional to its diameter; one does not even need to know that
the constant of proportionality is π.

A slightly more sophisticated property (see Figure 3) is that the area of
the arbelos equals the area of the circle whose diameter CD is the portion
inside the arbelos of the common tangent line to the two smaller semicircles
at their point C of tangency. This property of the arbelos is Proposition 4

A BC

D

Figure 3. An area property of the arbelos.

in the ancient Greek Book of Lemmas (about which more later).
For the proof, reflect in the line through the points A and B (see Fig-

ure 4) and observe that twice the area of the arbelos is what remains

2The abstract of [40] speaks of “cette figure universellement connue.”
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A BC

Figure 4. Proof by reflection.

when the areas of the two smaller circles (with diameters AC and CB) are
subtracted from the area of the large circle (with diameter AB). Since
the area of a circle is proportional to the square of the diameter (Eu-
clid’s Elements, Book XII, Proposition 2; we do not need to know that
the constant of proportionality is π/4), the problem reduces to showing that
2(CD)2 = (AB)2−(AC)2−(CB)2. (To indicate the length of a line segment, I
enclose the name of the segment in parentheses.) The length (AB) equals the
sum of the lengths (AC) and (CB), so this equation simplifies algebraically
to the statement that (CD)2 = (AC)(CB). Thus the claim is that the length
of the segment CD is the geometric mean of the lengths of the segments AC

and CB. Now (see Figure 5) the triangle ADB, being inscribed in a semicir-

A BC

D

Figure 5. A mean proportional.
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cle, has a right angle at the point D (Euclid, Book III, Proposition 31), and
consequently (CD) is indeed “a mean proportional” between (AC) and (CB)
(Euclid, Book VI, Proposition 8, Porism). This proof approximates the
ancient Greek argument; one may find the idea implemented as a “proof
without words” in [28].

Proposition 5 of the Book of Lemmas is the more arresting statement
that if two circles are inscribed in the arbelos tangent to the line segment CD,
one on each side as shown in Figure 6, then the two circles are congruent.
The proofs that I know proceed by explicitly computing the diameters of the
two circles. I invite the reader to attempt the computation via Euclidean
methods before reading on for a simple modern argument by reflection.

A BC

D

Figure 6. The twin circles.

3. REFLECTION IN A CIRCLE. Speaking at the end of the year
1928, Julian Lowell Coolidge said that the “most notable epoch in all the
long history of geometry, the heroic age, was almost exactly a hundred
years ago” [12, p. 19]. He cited dramatic nineteenth-century advances in all
sorts of geometry: synthetic, analytic, projective, hyperbolic, elliptic, and
differential. The heroic geometric development of concern here, dating from
that period, is the method of reflection in a circle, also known as inversion.

Perhaps the most renowned nineteenth-century user of this tool, who
discovered in the year of his twenty-first birthday how to solve problems in
electrostatics via inversion [42], is William Thomson, subsequently created
Baron Kelvin of Largs. The great geometer Steiner, however, usually gets
credit for the method of inversion on the basis of notes he wrote on the
subject in 1824, the year of Thomson’s birth.3

3Extracts from Steiner’s notes were eventually published in [10], but not until half a
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The inverse of a point M with respect to a given circle in the plane is the
point W determined by two conditions: (i) the points M and W lie on the
same ray emanating from the center of the circle, and (ii) the product of the
distances of M and W from the center of the circle equals the square of the
radius of the circle. (See Figure 7; the reason for the labels M and W is that

O
r

M

W

Figure 7. Reflection in a circle: (OM)(OW) = r2.

these glyphs of the standard Latin character set are very nearly reflections
of each other.) The points of the circle are fixed under inversion, and the
center of the circle corresponds under inversion to the ideal point at infinity.

Under inversion in a given circle, both lines and circles behave nicely.
For example, the definition of the inverse point immediately implies that
a line through the center of the circle of inversion inverts into itself (not
pointwise, but as a set). Moreover, either by purely geometric methods or
by algebraic calculations, one can show that

• a line not passing through the center of the circle of inversion inverts
to a circle;

• a circle not passing through the center of the circle of inversion inverts
to a circle;

• a circle passing through the center of the circle of inversion inverts to
a line.

The other key property of inversion is anticonformality: the angle at
which two oriented curves intersect has the same magnitude as the angle at

century after Steiner’s death. Priority for the concept of inversion is sometimes claimed
on behalf of various other mathematicians active in the first half of the nineteenth century.
Nathan Altshiller Court [13] went so far as to attribute the idea of inversion to Apollonius
of Perga, a contemporary of Archimedes from two millennia earlier!
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which the inverted curves intersect, but the opposite sense. For example, two
rays starting at the center of the circle of inversion invert into themselves, but
with their directions reversed, so the angle between the rays reverses sense.
For another example, consider a circle Γ that cuts the circle of inversion
at right angles. The inverse of Γ is another circle that meets the circle of
inversion orthogonally, and at the same points as Γ does; hence a circle
orthogonal to the circle of inversion inverts into itself.

Inversion is a standard topic both in textbooks on geometry and in text-
books on complex analysis, but the word “inversion” has different meanings
in the two subjects. Geometric inversion corresponds to the composition of
the complex analytic inversion z 7→ 1/z with complex conjugation z 7→ z.

Returning to Figure 6, consider the effect of inverting the diagram with
respect to a circle that is centered at the point A and that orthogonally
intersects the left-hand member—call it Γ—of the pair of inscribed circles.
Then Γ inverts into itself, and the horizontal line through A and B inverts
into itself. The semicircle with diameter AB inverts into a portion of a
line that is tangent to the circle Γ and that meets the line segment AB

orthogonally at the point B′ inverse to the point B (see Figure 8). The

A BC = C′B′

D′

Γ

Figure 8. Inversion of Figure 6.
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semicircle with diameter AC inverts into a portion of a line that is tangent
to Γ and that meets the line segment AB orthogonally at the point C′ inverse
to the point C. Since Γ is fixed by inversion, the points C and C′ must be
identical, which means that the point C lies on the circle of inversion. (Also
shown in the figure—but not needed in the argument—are the image D′ of
the point D, the circular image of the line segment CD, and the image of the
right-hand twin circle.)

Let d1 denote the length of the line segment AC, let d2 denote the length
of the line segment CB, and let d denote the unknown diameter of the
circle Γ. The points B and B′ are inverse points with respect to the circle
with center A and radius d1, so (d1 − d)(d1 + d2) = d2

1, which implies that
d = d1d2/(d1 + d2). This quantity is symmetric in d1 and d2, so repeating
the argument for inversion with respect to a suitable circle centered at B will
yield the same diameter for the right-hand circle inscribed in the arbelos.
Thus the twin circles are indeed congruent: they have equal diameters.

4. LOST IN TRANSLATION. Figure 2 appears frequently in the lit-
erature on recreational mathematics with a comment to the effect: “The
figure was first studied by Archimedes of Syracuse, who called it the arbelos
or shoemaker’s knife.” Such historical statements, unlike mathematical the-
orems, are only an approximation to an unknowable truth. The surviving
works of Archimedes do not mention the arbelos.

The source for the claim that Archimedes studied and named the arbelos
is the Book of Lemmas, also known as the Liber assumptorum from the title
of the seventeenth-century Latin translation of the ninth-century Arabic
translation of the lost Greek original. Although this collection of fifteen
propositions is included in standard editions of the works of Archimedes [1],
[2], [3], [4], the editors acknowledge that the author of the Book of Lemmas

was not Archimedes but rather some anonymous later compiler, who indeed
refers to Archimedes in the third person.

Perhaps one day someone will find direct evidence that Archimedes ex-
plored the properties of Figure 2. After all, just a century ago the lost
Method of Archimedes was partially recovered by Johan Ludvig Heiberg
from a palimpsest in a library in Constantinople. After the palimpsest was
auctioned in 1998 for two million dollars, contemporary scholars were al-
lowed access to recover more of the text using modern technology, thereby
gaining new insight into the works of Archimedes (see [29]).

Why is the arbelos called “the shoemaker’s knife”? The oldest extant
source for the Greek word seems to be Nicander’s Theriaca, a work about
venomous creatures that apparently dates from the middle of the second
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century b.c., about half a century after the death of Archimedes. What I
am able to understand from the obscure poetical passage is that Nicander
knew the arbelos as a tool used by leather-workers to trim smelly green
hides.4 A scholium from an unknown date and hand glosses “arbelos” as
a circular knife used by skutotìmoi, a word that literally means “leather-
cutters” but that typically is rendered as “shoemakers.” The ancient use of
a knife with a curved blade in the manufacture of sandals is indeed attested
by Egyptian drawings from 3500 years ago [35, p. 18], and a similar tool is
still marketed today to leather-crafters (Figure 9).

Figure 9. A modern round knife.

My view, however, is that “shoemaker’s knife” is a bad translation. Just
as most users of the “Swiss army knife” have no connection with the armed
forces of Switzerland, most wielders of the arbelos have nothing to do with
the making of shoes. D’Arcy W. Thompson reported more than half a
century ago that the round knife was then in use by saddlers but not by
shoemakers [41]. A century before that, Charles Dickens surely was not
thinking of a tool like the one in Figure 9 when he wrote of visiting an
imprisoned thief who “would have gladly stabbed me with his shoemaker’s
knife” [14, pp. 248–249].

A good translation ought to bring a familiar image to the reader’s mind.
Since most modern readers are unfamiliar with the round knife shown in
Figure 9, I suggest renaming the arbelos as “the claw.”5

4The original Greek, as given in [30, pp. 34–35], reads: Tä dfl Ćpä qroäc âqjrän
Łhtai, oÙon íte pladìwnta perÈ skÔla kaÈ dèrefl Ñppwn gnaptìmenoi mudìwsin Ípfl Ćrbăloisi
lĹjargoi.

5Paul Ver Eecke, writing for a French audience [32], evidently felt that “tranchet de
cordonnier” was an insufficient translation of “arbelos,” for he glossed the term with the
description “griffe de félin”—feline’s claw.
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5. REFLECTIONS ON PAPPUS. Some half a millennium after
Archimedes died during the sack of Syracuse in the second Punic war, Pap-
pus of Alexandria wrote his great Collection, a set of eight books (mostly
extant) that preserve much Greek mathematics that otherwise would have
been lost. The precise span of the life of Pappus is uncertain, but modern
histories often represent him as the last bright light of the Greek mathemat-
ical tradition in the penumbra of the Dark Ages.

Although Pappus sometimes cites his sources, one cannot always tell
when he is improving earlier treatments and when he is being wholly original.
His discussion of the arbelos in Book IV of the Collection notably does not
cite Archimedes or anybody else by name. But Pappus makes clear that he
holds no claim to the most famous theorem about the arbelos, a theorem
nowadays often attributed to Pappus by default.

This remarkable theorem states (see Figure 10) that if one inscribes a

A BC

Figure 10. A classical diagram.

chain of circles in the arbelos, the first circle in the chain being tangent to
all three semicircles, and the subsequent circles in the chain being tangent
to the preceding circle and to two of the semicircles, then the height of the
center of the nth circle above the horizontal line segment AB is n times
the diameter of that circle. The direction of the chain is immaterial: the
chain can be directed to the left (illustrated in Figure 10), to the right, or
downward. The latter two cases are illustrated in Figure 11.

The proposition is sometimes called the “ancient theorem” of Pappus
because of the words with which Pappus introduces it in Book IV of the
Collection. Translated loosely into modern idiom, the phrase that Pappus
uses is: “The following classical result is well known.”6

The proof that Pappus gives is a tour de force of Euclidean geometry:
three lemmas and many pages of sophisticated, systematic use of auxil-

6The Greek is given in [33, p. 208] as: Fèretai ên tisin ĆrkaÐa prìtasic toiaÔth.
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A BC

Figure 11. Two variations.

iary lines, similar triangles, and the Pythagorean theorem. For a sketch of
the proof of Pappus in contemporary language, see the paper [5] by Leon
Bankoff, who was by avocation a mathematician but by profession a dentist
with an office at an upscale address near Beverly Hills.7

The modern proof using inversion is elegantly simple. In Figure 10,
invert with respect to a circle centered at A and orthogonal to the nth circle
of the inscribed chain. The nth circle inverts into itself, the two semicircles
tangent to it invert into vertical lines, and the preceding n− 1 circles in the
chain invert into circles tangent to those lines. See Figure 12, where it is
now obvious that the height of the center of the nth circle is n times the
diameter of the circle. (For the variations shown in Figure 11, one can argue
similarly by inverting in a circle centered either at C or at B.)

I do not know which nineteenth-century author first published this proof
of the theorem by inversion. To see a treatment in an accessible recent book,
consult [8, p. 14] or [27, pp. 136–137].

Let us go a little further with Figure 12. By the defining property of
inversion, (AC)/(AB

′) = (AB)/(AC
′). Dilating the figure by this factor with

respect to the center A moves the vertical tower of circles to a vertical tower
over the line segment CB. Since dilation preserves ratios of lengths, it follows
that the distance from the center of the nth circle of the original chain to the
vertical line through the point A is equal to a constant times the diameter
of the nth circle. This observation is due to Steiner (see [37, p. 261] or,
equivalently, [38, p. 49]). The value of the constant can be read off from the
circle with diameter CB: namely, the constant equals (1/2) + (AC)/(CB).

Exercise for the reader. What is the analogous statement for a chain of

7After the death of Victor Thébault in 1960, Bankoff was the world expert on the
arbelos. Clayton W. Dodge is editing a book manuscript on the arbelos by Bankoff and
Thébault for eventual publication.
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A BCB′ C′

Figure 12. Inversion of Figure 10.

circles converging to the point B? to the point C?

A right triangle is called Pythagorean if it is similar to a triangle whose
sides have integral lengths. (This means that the original triangle has in-
tegral sides with respect to a suitable unit of measurement.) An amus-
ing remark of Steiner ([37, p. 265], [38, p. 53]) is that if the lengths (AC)
and (CB) are commensurable—that is, if the ratio (AC)/(CB), which I will
denote by ρ, is a rational number—then in Figure 10 every right triangle
with vertices at the midpoint of the line segment AB, at the center of the
nth circle, and at the foot of the perpendicular dropped from that center to
the line segment AB is a Pythagorean triangle (see Figure 13).

To see why, suppose that the nth circle has radius rn and center at the
point (xn, yn), where the midpoint of the line segment AB is taken as the
origin of the Cartesian coordinates. The discussion of Figure 12 implies
that yn = 2nrn, and xn = (1 + 2ρ)rn − 1

2
(AB). Moreover, the length of the

hypotenuse of the nth triangle is 1

2
(AB) − rn. Consequently, what needs to

be shown is that the length (AB) is a rational multiple of rn, for then all
three sides of the nth triangle will be commensurate with rn. Combining
the Pythagorean theorem with the explicit expressions for xn and yn yields

(2nrn)2 =
(

1

2
(AB) − rn

)2

−
(

(1 + 2ρ)rn − 1

2
(AB)

)2
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A BC

Figure 13. Some Pythagorean triangles.

= 2ρrn ((AB) − 2rn − 2ρrn) .

Thus (AB) = 2rn(ρ+1+n2ρ−1), so the length (AB) is indeed commensurate
with rn under the hypothesis that ρ is a rational number.

Exercise for the reader. Moving the first vertex of the triangle from the
midpoint of the line segment AB to the midpoint of the line segment AC

produces another set of Pythagorean triangles.

6. ARCH REFLECTIONS. One of the attractions of planar geometry
is that an enthusiastic amateur, like Leon Bankoff, can acquire lore that
surpasses the erudition of professionals who ought to know better. I offer as
evidence some unrecognized appearances of the arbelos in the lovely book
Geometry Civilized by J. L. Heilbron [21].

In [21, Exercise 5.5.15], the author draws the arbelos and states the area
theorem associated with Figure 3. He does not name the arbelos, however,
and he cites as his source a problem in the Ladies Diary of 1808 (as given in
[25, vol. 4, p. 106]). Certainly it is interesting to know that geometry was a
popular pastime in England two hundred years ago, but the author is off by
perhaps two thousand kilometers and two thousand years in the provenance
of the problem.

Moreover, the author does not mention that geometry was also a pop-
ular pastime in Japan of the Edo period. In the case of a symmetric ar-
belos, the theorem of section 5 about a chain of inscribed circles appeared
on a wooden sangaku, a geometry tablet hung in a Japanese temple. See
Figure 14, which shows also a version with a higher-order chain of inscribed
circles from a sangaku about two centuries old. Hidetoshi Fukagawa, a high-
school mathematics teacher, is the driving force in preserving the history of
sangaku [31].
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Figure 14. Sangaku problems (adapted from [18, p. 18] and [34]).

An unrecognized appearance of the arbelos occurs more prominently
in [21] in the penultimate section, which is devoted to geometric designs rem-
iniscent of Gothic windows. The discussion focuses on Figure 15, consisting

Figure 15. Arch (adapted from [21, p. 289]).

of a semicircle, arcs of two circles with radius coincident with the diame-
ter of the semicircle, and a sequence of inscribed circles condensing on the
right-hand endpoint. The author states and proves “Alison’s conjecture”
to the effect that the right triangle with vertices at the left-hand endpoint,
at the center of the nth inscribed circle, and at the foot of the perpendic-
ular dropped from that center to the base is a Pythagorean triangle; and
similarly if the first vertex is placed at the midpoint of the base.

One distinguished reviewer of the book was sufficiently taken with this
“original result” to reproduce it (including the figure) at the conclusion of
the review in this Monthly [36]. As it happens, Leon Bankoff contributed
this very problem to this Monthly [6] half a century ago! The solution [9]
was accompanied by the diagram shown in Figure 16, which is effectively
the same as Figure 15 after a rotation and a reflection.

The reader has realized by now, I hope, that the problem about the
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Figure 16. Pythagorean triangles (adapted from [9]).

Gothic arch is nothing more than a special case of Steiner’s remark (dis-
cussed at the end of section 5) about the Pythagorean triangles lurking in
the chain of circles inscribed in the arbelos (see Figure 17). This special
case is explicitly written out in Steiner’s paper [37, p. 266], [38, p. 53].

Figure 17. Reflecting the symmetric arbelos into the arch.

7. MOHR ON THE ARBELOS. Since the arbelos is a classical bit
of “pure” mathematics, I was startled to learn from [7] that the arbelos is
well known in textbooks on solid mechanics under the name “Mohr’s circles.”
One of the topics of interest to Otto Mohr (1835–1918), a renowned German
civil engineer and professor of mechanics, was how materials react to stress.
Because shear stress is a key factor in the failure of materials, Mohr used a
diagram that relates the shear force to the normal force. Understanding this
diagram involves the following mathematical problem (which Mohr posed
and solved).

Let L be a symmetric 3 × 3 matrix with real entries, and let V denote
a unit vector in R3, thought of as representing the normal vector to some
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surface. Consider the mapping that takes the unit vector V to the pair
of real numbers (x, y), where x = V · LV (the dot denotes the standard
scalar product, so xV is the normal component of the vector LV), and
y = ‖LV − xV‖ (the length of the tangential component of LV). What is
the range of this mapping (in R2) as V varies over the unit sphere (in R3)?

The remarkable answer is that the range is an arbelos. Moreover, the
abscissae of the three cusp points are the eigenvalues of the matrix. In
Figure 18, the eigenvalues are denoted by λ1, λ2, and λ3 in increasing order.
(I assume that the three eigenvalues are all distinct; otherwise the arbelos

λ1 λ2 λ3

Figure 18. Eigenvalues and Mohr’s arbelos.

degenerates.)
To see why the range is an arbelos, first observe that since R3 has an

orthonormal basis consisting of eigenvectors of the symmetric matrix L, and
since the range in R2 does not change when R3 is subjected to an orthogonal
transformation, there is no loss of generality in assuming that the matrix L

is diagonal. Let uj denote the square of the jth component of the unit
vector V. Then x =

∑

3

j=1 λjuj , and y2 =
∑

3

j=1 λ2
juj − x2. By using u1,

u2, and u3 as the independent variables, one can view the domain of Mohr’s
mapping as the triangle in R3 with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1).

These vertices evidently map to the three cusp points of the arbelos
indicated in Figure 18. I claim that the three edges of the triangular domain
map to the three semicircles bounding the arbelos. By symmetry, it suffices
to check one edge, say the edge where u3 = 0 and u1 + u2 = 1. In this
case, a simple calculation shows that y2 + x2 − (λ1 + λ2)x = −λ1λ2. Since
−λ1λ2 = {1

2
(λ1 − λ2)}

2 − {1

2
(λ1 + λ2)}

2, it follows that

y2 +

(

x −
λ1 + λ2

2

)2

=

(

λ1 − λ2

2

)2

.

This equation indeed describes a circle with center at the point midway
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between the first two eigenvalues and with radius equal to half the distance
between those eigenvalues.

To see that the interior of the triangular domain maps precisely to the
interior of the arbelos, consider how the ordinate y varies when x is held
fixed. Since fixing x corresponds to intersecting the triangular domain with
a certain plane, the effective domain becomes a line segment in R3. On
this line segment, y2 is an affine linear function of the variables u1, u2,
and u3, so the values of y2 (hence the values of the nonnegative quantity y)
fill out some interval. The endpoints of that interval correspond to certain
boundary points of the domain. As observed in the preceding paragraph,
each boundary point of the domain maps to one of the semicircles bounding
the arbelos. In other words, the image of Mohr’s mapping is made up of
vertical line segments each of which connects one of the lower semicircles of
the arbelos to the upper semicircle.

8. PARTING REFLECTIONS. This article is an amplified version of
my reply to the correspondent who posed the problem stated in the intro-
duction. A full reply would require a book, for the problem has ramifications
that lead to recent developments in contemporary mathematical research.
The theorem about the chain of circles inscribed in the arbelos has a close
affinity with the famous classical problem of Apollonius: to construct a cir-
cle tangent to three given circles. Continuing the iterations suggested by
the second sangaku in Figure 14 so as to fill up the interstices in the figure
with touching circles produces a so-called Apollonian circle packing, a sub-
ject that has attracted much recent attention (see [24] and [39] and their
references).

Eventually I discovered that the diagram in Figure 1 is incorrectly drawn.
Following the dictum of Arnold Ross to “prove or disprove and salvage if
possible,” I found the corrected problem shown in Figure 19. The central
circle, instead of being tangent to all three semicircles (corresponding to the
initial circle in the chain of Figure 10), should be the right-hand twin circle
from Figure 6. Having reached the end of this article, readers should know
enough about the arbelos to solve the problem themselves. One can look
up a published solution [22] that uses Euclidean methods, but simpler is to
apply inversion.8

8Hint: It suffices to show that the line segments AF and EF meet at a right angle, for
then the triangles AFG and ECG are similar. Invert in a circle centered at A that cuts the
right-hand twin circle orthogonally, and prove that the point F is left fixed.
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G

Figure 19. Corrected problem: AC = EF.
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