Gegeben ist eine Kugel K mit dem Radius 5, die in eine im Koordinatensystem stehende würfelförmige Schachtel ABCDEFGH mit der Kantenlänge 10 (siehe Abbildung) verpackt ist, sowie die Punkteschar

$$P_{a}\left[10 \mid 0 \mid \frac{5(a+2)}{a+1}\right] \text{mit dem Parameter } a \in \mathbb{R}_{0}^{+}.$$

- 1. a) Wie viel Prozent des Schachtelvolumens füllt die Kugel aus ?
 - b) Berechnen Sie die Koordinaten der Punkte Z_1 und Z_2 , in denen die Gerade DF die Kugel schneidet.

Zur Kontrolle :
$$Z_1 \left[5 + \frac{5}{3}\sqrt{3} \left| 5 - \frac{5}{3}\sqrt{3} \right| 5 + \frac{5}{3}\sqrt{3} \right]$$

c) Geben Sie die kürzeste Strecke an, auf der sich der Punkt P_a bewegt, wenn a das Intervall [0; ∞[durchläuft. Begründen Sie Ihre Antwort.

Um diese Verpackung attraktiver zu gestalten, werden durch Ebenen, die senkrecht zu den Raumdiagonalen des Würfels verlaufen, an allen seinen Ecken kongruente dreiseitige Pyramiden abgeschnitten.

- 2. a) Um welche besonderen Dreiecke handelt es sich bei der Grundfläche (Schnittfläche) und den Seitenflächen der abgeschnittenen Pyramiden?
 - b) Bestimmen Sie eine Gleichung derjenigen Ebene S_a in Normalenform, die senkrecht zu DF liegt und den Punkt P_a enthält

Mögliches Ergebnis:
$$x_1 - x_2 + x_3 - \frac{15a + 20}{a + 1} = 0$$

- 3. Im Folgenden sei a = 4.
 - a) Zeigen Sie durch Rechnung, dass die Ebene S₄ die Kugel nicht schneidet.
 - b) Zeichnen Sie den Würfel, den Punkt P₄ und die Schnittfläche der Ebene S₄ mit dem Würfel in ein Koordinatensystem (Orientierung wie in obiger Abbildung) ein.

- c) Berechnen Sie die Volumenverkleinerung der Schachtel und die Oberflächenabnahme der Schachtel, wenn in gleicher Weise wie durch an der Ecke F an allen Würfelecken Pyramiden abgeschnitten werden.
- d) Die Ebene S₄ und die drei entsprechenden Ebenen, die die oberen Ecken E, G und H des Würfels abschneiden, haben genau einen Punkt W gemeinsam (Nachweis nicht erforderlich). Berechnen Sie die Koordinaten von W.

Lösung

1 .a)
$$\frac{\frac{4}{3}\pi \cdot 5^3}{10^3} \approx 52,4\%$$

b) Mittelpunkt des Würfels :
$$\overrightarrow{m} = \frac{1}{2} \cdot (\overrightarrow{d} + \overrightarrow{f}) = \begin{pmatrix} 5 \\ 5 \\ 5 \end{pmatrix} M (5 | 5 | 5)$$

Einheitvektor in Richtung von \overrightarrow{DF} : $\overrightarrow{v_0} = \frac{\sqrt{3}}{3} \cdot \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

$$\overrightarrow{z_1} = \overrightarrow{m} + 5 \cdot \overrightarrow{v_0} \text{ und } \overrightarrow{z_2} = \overrightarrow{m} - 5 \cdot \overrightarrow{v_0}$$

$$Z_{1}\left[5+\frac{5}{3}\sqrt{3}\left|5-\frac{5}{3}\sqrt{3}\right|5+\frac{5}{3}\sqrt{3}\right] \text{ und } Z_{1}\left[5-\frac{5}{3}\sqrt{3}\left|5+\frac{5}{3}\sqrt{3}\right|5-\frac{5}{3}\sqrt{3}\right]$$

c)
$$\frac{5 \cdot (a+2)}{a+1} = 5 + \frac{5}{a+1}$$
 d. h. die x₃-Koordinate nimmt echt monoton mit a ab.

Der Punkt P_a bewegt sich auf der x_3 -Achse von $(10 \mid 0 \mid 10)$ bis $(10 \mid 0 \mid 5)$ (wird nicht erreicht).

2. a) Grundflächen: Gleichseitige Dreiecke

Seitenflächen: Gleichschenklig, rechtwinklige Dreiecke

b) Ansatz : $x_1 - x_2 + x_3 + n_4 = 0$

Punkt
$$P_a$$
 eingesetzt : $10 + \frac{5 \cdot (a+2)}{a+1} + n_4 = 0 \implies n_4 = \frac{-15a-20}{a+1} = -\frac{5 \cdot (3a+4)}{a+1}$

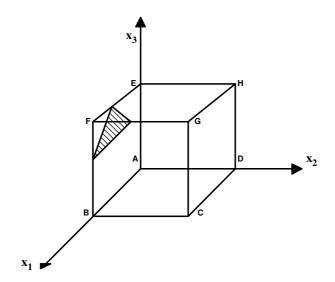
$$S_a: x_1 - x_2 + x_3 - -\frac{15a + 20}{a + 1} = 0$$

3. a) $S_4: x_1 - x_2 + x_3 - 16 = 0$

$$d(M; S_4) = \left| \frac{5 - 5 + 5 - 16}{\sqrt{3}} \right| = \frac{11}{3} \sqrt{3} > 5$$

Die Ebene S₄ schneidet die Kugel nicht.

b) Schnittpunkt von S_4 mit den Würfelkanten : $\left(10 \mid 0 \mid 6\right)$, $\left(6 \mid 0 \mid 10\right)$ und $\left(10 \mid 4 \mid 10\right)$.



c) Volumenabnahme:

$$\Delta V = 8 \cdot \frac{1}{3} \cdot \left(\frac{1}{2} \cdot 4 \cdot 4 \cdot 4 \right) = \frac{256}{3}$$

Oberflächenabnahme:

$$\Delta O = 24 \cdot \frac{1}{2} \cdot 4 \cdot 4 - 8 \cdot \frac{1}{2} \cdot 4\sqrt{2} \cdot 2\sqrt{2} \cdot \sqrt{3} = 192 - 64\sqrt{3} = 64 \cdot \left(3 - \sqrt{3}\right)$$

d) Wegen der Symmetrie gilt $w_1 = w_2 = 5$. W liegt auf S_4

$$5-5+x_3-16=0 \implies x_3=16 \quad W(5|5|4)$$