Gegeben ist die Funktion $f: x \to \ln \frac{x+1}{6-|x|}$

mit maximaler Definitionsmenge D. Ihr Graph wird mit G_f bezeichnet.

- 1. Zeigen Sie : D = $]-\infty$; $-6[\cup]-1$; 6[
- 2. Bestimmen Sie die Schnittpunkte des Graphen Gf mit den Koordinatenachsen.
- 3. Ermitteln Sie das Verhalten von f an den Randern von]-1; 6[.
- 4. a) Zeigen Sie, dass gilt : f'(x) > 0 für $x \in]-1$; $6[\setminus \{0\}]$.

Bestimmen Sie die Grenzwerte $\lim_{x \to 0-0} f'(x)$ und $\lim_{x \to 0+0} f'(x)$.

Teilergebnis:
$$f'(x) = \frac{7}{(x+1)\cdot(6-x)}$$
 für $0 < x < 6$

b) Untersuchen Sie, fur welchen Wert von x der Term $(x + 1) \cdot (6 - x)$ ein lokales Extremum annimmt.

Begründen Sie (ohne Verwendung von f") anhand des Terms f'(x), dass G_f in]0; 6[genau einen Wendepunkt W besitzt, und geben Sie die Koordinaten von W an.

5. Berechnen Sie f(5) und f'(2,5). Zeichnen Sie G_f unter Verwendung aller bisherigen Ergebnisse im Intervall]-1; 6[.

Arbeiten Sie insbesondere die Ergebnisse der Grenzwertbetrachtungen aus Teilaufgabe 4.a) erkennbar ein (Längeneinheit 1 cm, Ursprung in Blattmitte).

6. a) Die Einschränkung von f auf] – 1; 0[wird mit g bezeichnet.

Begrunden Sie, dass g eine Umkehrfunktion g⁻¹ besitzt, und zeigen Sie, dass gilt :

$$g^{-1}(x) = -1 - \frac{5e^x}{e^x - 1}$$

b) Zeichnen Sie den Graphen von g⁻¹ in das Koordinatensystem von Aufgabe 5 ein.

7. Im dritten Quadranten wird durch die Koordinatenachsen, den Graphen von g und die Gerade mit der Gleichung x = -1 ein Flächenstück begrenzt.

Zeigen Sie, dass es einen endlichen Inhalt besitzt, und geben Sie diesen an.

Lösung

1. Bedingung: $\frac{x+1}{6-|x|} > 0$

	$-\infty < x < -6$	-6 < x < -1	-1 < x < 6	6 <x<∞< th=""></x<∞<>
x + 1	_	_	+	+
6- x	_	+	+	_
$\frac{x+1}{6- x }$	+	-	+	-

$$2. f(x) = 0 \iff \frac{x+1}{6-|x|} = 1 \iff x+1 = 6-|x|$$

1. Fall
$$x > 0$$
: $x + 1 = 6 - x \iff x = 2,5$

2. Fall
$$x < 0$$
: $x + 1 = 6 + x$ (Widerspruch)

$$S_{x}(2,5;0)$$

$$f(0) = \ln \frac{0+1}{6-0} = \ln \frac{1}{6} = -\ln 6$$

3.
$$\lim_{x \to -1+0} \ln \frac{x+1}{6-|x|} = -\infty$$
, weil $\lim_{x \to -1+0} \frac{x+1}{6-|x|} = 0+0$ und $\lim_{u \to 0+0} \ln u = -\infty$

$$\lim_{x \to 6-0} \ln \frac{x+1}{6-|x|} = \infty, \text{ weil } \lim_{x \to -6-0} \frac{x+1}{6-|x|} = \infty \text{ und } \lim_{u \to \infty} \ln u = \infty$$

4. a) 1. Fall 0 < x < 6:

$$f(x) = \ln \frac{x+1}{6-x} \quad \Rightarrow \quad f'(x) = \frac{1}{\frac{x+1}{6-x}} \cdot \frac{1 \cdot (6-x) - (x+1) \cdot (-1)}{(6-x)^2} = \frac{7}{(x+1) \cdot (6-x)} > 0$$

 $f \ddot{u} r 0 < x < 6$

2. Fall -1 < x < 0:

$$f(x) = \ln \frac{x+1}{6+x} \quad \Rightarrow \quad f'(x) = \frac{1}{\frac{x+1}{6+x}} \cdot \frac{1 \cdot (6+x) - (x+1) \cdot 1}{(6+x)^2} = \frac{5}{(x+1) \cdot (6+x)} > 0$$

$$f\ddot{u}r - 1 < x < 0$$

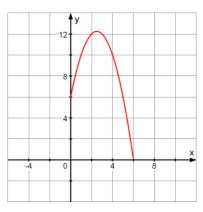
$$\lim_{x \to 0-0} f'(x) = \frac{5}{1 \cdot 6} = \frac{7}{6} \text{ und } \lim_{x \to 0+0} f'(x) = \frac{7}{1 \cdot 6} = \frac{7}{6}$$

b) Sei
$$p(x) = (x+1)\cdot(6-x) = -x^2+5x+6 \implies p'(x) = -2x+5$$

Die durch p(x) definierte Parabel hat den Hochpunkt

Wegen f'(x) = $\frac{7}{p(x)}$ für 0 < x < 6 hat f' bei x = 2,5 einen

Tiefpunkt und f damit an dieser Stelle einen Wendepunkt.

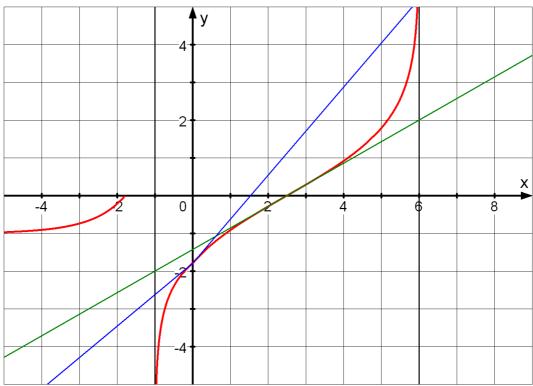


Da p auf]1; 2,5[streng monon steigend ist, ist f ' auf diesem Intervall streng monton fallend und f daher rechtsgekrümmt.

Analog folgt, dass f auf]2,5; 6[linksgekrümmt ist.

Damit ist W(2,5;0) einziger Wendepunkt in]0;6.

5. $f(5) = \ln 6$ und $f'(2,5) = \frac{4}{7}$



6. a)
$$y = \ln \frac{x+1}{6+x}$$
 \iff $e^y = \frac{x+1}{6+x}$ \iff $6e^y + xe^y = x+1$ \iff $x = \frac{1-6e^y}{e^y - 1}$

$$g^{-1}(x) = \frac{1 - 6e^x}{e^x - 1} = \frac{1 - e^x - 5e^x}{e^x - 1} = \frac{1 - e^x}{e^x - 1} - \frac{5e^x}{e^x - 1}$$

$$7. \ \mathfrak{A}_{1}(k) = \int_{k}^{-\ln 6} (-1 - \frac{5e^{x}}{e^{x} - 1} - 1) dx = \left[-5 \cdot \ln |e^{x} - 1| \right]_{k}^{-\ln 6} =$$

$$= -5 \cdot \ln \frac{5}{6} + 5 \cdot \ln |e^{k} - 1| \rightarrow 5 \cdot \ln \frac{6}{5} \text{ für } k \rightarrow -\infty$$

$$\mathfrak{A} = 5 \cdot \ln \frac{6}{5} + \ln 6$$